This article is meant as a gentle introduction to the topological terms that often play a decisive role in effective theories describing topological quantum effects in condensed matter systems. We first take up several prominent examples, mainly from the area of quantum magnetism and superfluids/superconductors. We then briefly discuss how these ideas are now finding incarnations in the studies of symmetry-protected topological phases, which are in a sense the generalization of the concept of topological insulators to a wider range of materials, including magnets and cold atoms.