Toward an Empirical Theory of Pulsar Emission XI. Understanding the Orientations of Pulsar Radiation and Supernova Kicks


Abstract in English

Two entwined problems have remained unresolved since pulsars were discovered nearly 50 years ago: the orientation of their polarized emission relative to the emitting magnetic field and the direction of putative supernova ``kicks relative to their rotation axes. The rotational orientation of most pulsars can be inferred only from the (``fiducial) polarization angle of their radiation, when their beam points directly at the Earth and the emitting polar fluxtube field is $parallel$ to the rotation axis. Earlier studies have been unrevealing owing to the admixture of different types of radiation (core and conal, two polarization modes), producing both $parallel$ or $perp$ alignments. In this paper we analyze the some 50 pulsars having three characteristics: core radiation beams, reliable absolute polarimetry, and accurate proper motions. The ``fiducial polarization angle of the core emission, we then find, is usually oriented $perp$ to the proper-motion direction on the sky. As the primary core emission is polarized $perp$ to the projected magnetic field in Vela and other pulsars where X-ray imaging reveals the orientation, this shows that the proper motions usually lie $parallel$ to the rotation axes on the sky. Two key physical consequences then follow: first, to the extent that supernova ``kicks are responsible for pulsar proper motions, they are mostly $parallel$ to the rotation axis; and second that most pulsar radiation is heavily processed by the magnetospheric plasma such that the lowest altitude ``parent core emission is polarized $perp$ to the emitting field, propagating as the extraordinary (X) mode.

Download