No Arabic abstract
We measure proper motions with the Hubble Space Telescope for 16 extreme radial velocity stars, mostly unbound B stars in the Milky Way halo. Twelve of these stars have proper motions statistically consistent with zero, and thus have radial trajectories statistically consistent with a Galactic center hypervelocity star origin. The trajectory of HE 0437-5439 is consistent with both Milky Way and Large Magellanic Cloud origins. A Galactic center origin is excluded at 3-sigma confidence for two of the lowest radial velocity stars in our sample, however. These two stars are probable disk runaways and provide evidence for ~500 km/s ejections from the disk. We also measure a significant proper motion for the unbound sdO star US 708. Its 1,000 km/s motion is in some tension with proposed supernova ejection models, but can be explained if US 708 was ejected from the stellar halo. In the future, we expect Gaia will better constrain the origin of these remarkable unbound stars.
We present an investigation of the known sample of runaway stars. The orbits of these stars are traced back to their origin in the Galactic disc. The velocity distribution of these stars is compared to theoretical predictions. We conclude that the majority of stars is well explained by the standard binary ejection mechanism (BEM) and the dynamical ejection mechanism (DEM). However, we find a sample of ten stars which has ejection velocities in excess of those predicted by standard scenarios. We discuss how these can be explained by a variant of the BEM. This mechanism can create runaway stars exceeding the Galactic escape velocity (known as hypervelocity stars). The number of runaway stars in our Galaxy is estimated and compared to the known sample of high mass X-ray binaries, whose formation is linked to the BEM channel.
CONTEXT.The first Gaia Data Release (DR1) significantly improved the previously available proper motions for the majority of the Tycho-2 stars. AIMS. We want to detect runaway stars using Gaia DR1 proper motions and compare our results with previous searches. METHODS. Runaway O stars and BA supergiants are detected using a 2-D proper-motion method. The sample is selected using Simbad, spectra from our GOSSS project, literature spectral types, and photometry processed using CHORIZOS. RESULTS. We detect 76 runaway stars, 17 (possibly 19) of them with no prior identification as such, with an estimated detection rate of approximately one half of the real runaway fraction. An age effect appears to be present, with objects of spectral subtype B1 and later having travelled for longer distances than runaways of earlier subtypes. We also tentatively propose that the fraction of runaways is lower among BA supergiants that among O stars but further studies using future Gaia data releases are needed to confirm this. The frequency of fast rotators is high among runaway O stars, which indicates that a significant fraction of them (and possibly a majority) is produced in supernova explosions.
We present a catalog of relative proper motions for 368,787 stars in the 30 Doradus region of the Large Magellanic Cloud (LMC), based on a dedicated two-epoch survey with the Hubble Space Telescope (HST) and supplemented with proper motions from our pilot archival study. We demonstrate that a relatively short epoch difference of 3 years is sufficient to reach a $sim$0.1 mas yr$^{-1}$ level of precision or better. A number of stars have relative proper motions exceeding a 3-sigma error threshold, representing a mixture of Milky Way denizens and 17 potential LMC runaway stars. Based upon 183 VFTS OB-stars with the best proper motions, we conclude that none of them move faster than $sim$0.3 mas yr$^{-1}$ in each coordinate -- equivalent to $sim$70 km s$^{-1}$. Among the remaining 351 VFTS stars with less accurate proper motions, only one candidate OB runaway can be identified. We rule out any OB star in our sample moving at a tangential velocity exceeding $sim$120 km s$^{-1}$. The most significant result of this study is finding 10 stars over wide range of masses, which appear to be ejected from the massive star cluster R136 in the tangential plane to angular distances from $35^{primeprime}$ out to $407^{primeprime}$, equivalent to 8-98 pc. The tangential velocities of these runaways appear to be correlated with apparent magnitude, indicating a possible dependence on the stellar mass.
Based on observations performed with the Pulkovo normal astrograph in 2008-2015 and data from sky surveys (DSS, 2MASS, SDSS DR12, WISE), we have investigated the motions of 1308 stars with proper motions larger than 300 mas/yr down to magnitude 17. The main idea of our search for binary stars based on this material is reduced to comparing the quasi-mean (POSS2-POSS1; an epoch difference of $approx$50 yr) and quasi-instantaneous (2MASS, SDSS, WISE, Pulkovo; an epoch difference of $approx$10 yr) proper motions. If the difference is statistically significant compared to the proper motion errors, then the object may be considered as a {Delta}{mu}-binary candidate. One hundred and twenty one stars from among those included in the observational program satisfy this requirement. Additional confirmations of binarity for a number of stars have been obtained by comparing the calculated proper motions with the data from several programs of stellar trigonometric parallax determinations and by analyzing the asymmetry of stellar images on sky-survey CCD frames. Analysis of the highly accurate SDSS photometric data for four stars (J0656+3827, J0838+3940, J1229+5332, J2330+4639) allows us to reach a conclusion about the probability that these {Delta}{mu} binaries are white dwarf + M dwarf pairs.
Accelerations of both the solar system barycenter (SSB) and stars in the Milky Way cause a systematic observational effect on the stellar proper motions, which was first studied in the early 1990s and developed by J. Kovalevsky (aberration in proper motions, 2003, A&A, 404, 743). This paper intends to extend that work and aims to estimate the magnitude and significance of the aberration in proper motions of stars, especially in the region near the Galactic center. We adopt two models for the Galactic rotation curve to evaluate the aberrational effect on the Galactic plane. Based on the theoretical developments, we show that the effect of aberration in proper motions depends on the galactocentric distance of stars; it is dominated by the acceleration of stars in the central region of the Galaxy. Within 200 pc from the Galactic center, the systematic proper motion can reach an amplitude larger than 1000 uas/yr by applying a flat rotation curve. With a more realistic rotation curve which is linearly rising in the core region of the Galaxy, the aberrational proper motions are limited up to about 150 uas/yr. Then we investigate the applicability of the theoretical expressions concerning the aberrational proper motions, especially for those stars with short period orbits. If the orbital period of stars is only a fraction of the light time from the star to the SSB, the expression proposed by Kovalevsky is not appropriate. With a more suitable formulation, we found that the aberration has no effect on the determination of the stellar orbits on the celestial sphere. The aberrational effect under consideration is small but not negligible with high-accurate astrometry in the future, particularly in constructing the Gaia celestial reference system realized by Galactic stars.