Do you want to publish a course? Click here

The Closest Known Flyby of a Star to the Solar System

474   0   0.0 ( 0 )
 Added by Eric E. Mamajek
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Passing stars can perturb the Oort Cloud, triggering comet showers and potentially extinction events on Earth. We combine velocity measurements for the recently discovered, nearby, low-mass binary system WISE J072003.20-084651.2 (Scholzs star) to calculate its past trajectory. Integrating the Galactic orbits of this $sim$0.15 M$_{odot}$ binary system and the Sun, we find that the binary passed within only 52$^{+23}_{-14}$ kAU (0.25$^{+0.11}_{-0.07}$ parsec) of the Sun 70$^{+15}_{-10}$ kya (1$sigma$ uncertainties), i.e. within the outer Oort Cloud. This is the closest known encounter of a star to our solar system with a well-constrained distance and velocity. Previous work suggests that flybys within 0.25 pc occur infrequently ($sim$0.1 Myr$^{-1}$). We show that given the low mass and high velocity of the binary system, the encounter was dynamically weak. Using the best available astrometry, our simulations suggest that the probability that the star penetrated the outer Oort Cloud is $sim$98%, but the probability of penetrating the dynamically active inner Oort Cloud ($<$20 kAU) is $sim$10$^{-4}$. While the flyby of this system likely caused negligible impact on the flux of long-period comets, the recent discovery of this binary highlights that dynamically important Oort Cloud perturbers may be lurking among nearby stars.



rate research

Read More

Finding solar siblings, that is, stars that formed in the same cluster as the Sun, will yield information about the conditions at the Suns birthplace. We search for solar sibling candidates in AMBRE, the very large spectra database of solar vicinity stars. Since the ages and chemical abundances of solar siblings are very similar to those of the Sun, we carried out a chemistry- and age-based search for solar sibling candidates. We used high-resolution spectra to derive precise stellar parameters and chemical abundances of the stars. We used these spectroscopic parameters together with Gaia DR2 astrometric data to derive stellar isochronal ages. Gaia data were also used to study the kinematics of the sibling candidates. From the about 17000 stars that are characterized within the AMBRE project, we first selected 55 stars whose metallicities are closest to the solar value (-0.1 < [Fe/H] < 0.1 dex). For these stars we derived precise chemical abundances of several iron-peak, alpha- and neutron-capture elements, based on which we selected 12 solar sibling candidates with average abundances and metallicities between -0.03 to 0.03 dex. Our further selection left us with 4 candidates with stellar ages that are compatible with the solar age within observational uncertainties. For the 2 of the hottest candidates, we derived the carbon isotopic ratios, which are compatible with the solar value. HD186302 is the most precisely characterized and probably the most probable candidate of our 4 best candidates. Very precise chemical characterization and age estimation is necessary to identify solar siblings. We propose that in addition to typical chemical tagging, the study of isotopic ratios can give further important information about the relation of sibling candidates with the Sun. Ideally, asteroseismic age determinations of the candidates could solve the problem of imprecise isochronal ages.
136 - F. Menard , N. Cuello , C. Ginski 2020
We present observations of the young multiple system UX Tauri to look for circumstellar disks and for signs of dynamical interactions. We obtained SPHERE/IRDIS deep differential polarization images in the J and H bands. We also used ALMA archival CO data. Large extended spirals are well detected in scattered light coming out of the disk of UX Tau A. The southern spiral forms a bridge between UX Tau A and C. These spirals, including the bridge connecting the two stars, all have a CO (3-2) counterpart seen by ALMA. The disk of UX Tau C is detected in scattered light. It is much smaller than the disk of UX Tau A and has a major axis along a different position angle, suggesting a misalignment. We performed PHANTOM SPH hydrodynamical models to interpret the data. The scattered light spirals, CO emission spirals and velocity patterns of the rotating disks, and the compactness of the disk of UX Tau C all point to a scenario in which UX Tau A has been perturbed very recently (about 1000 years) by the close passage of UX Tau C.
At a distance of 2~pc, our nearest brown dwarf neighbor, Luhman 16 AB, has been extensively studied since its discovery 3 years ago, yet its most fundamental parameter -- the masses of the individual dwarfs -- has not been constrained with precision. In this work we present the full astrometric orbit and barycentric motion of Luhman 16 AB and the first precision measurements of the individual component masses. We draw upon archival observations spanning 31 years from the European Southern Observatory (ESO) Schmidt Telescope, the Deep Near-Infrared Survey of the Southern Sky (DENIS), public FORS2 data on the Very Large Telescope (VLT), and new astrometry from the Gemini South Multiconjugate Adaptive Optics System (GeMS). Finally, we include three radial velocity measurements of the two components from VLT/CRIRES, spanning one year. With this new data sampling a full period of the orbit, we use a Markov Chain Monte Carlo algorithm to fit a 16-parameter model incorporating mutual orbit and barycentric motion parameters and constrain the individual masses to be~$27.9^{+1.1}_{-1.0}$~$M_{J}$ for the T dwarf and~$34.2^{+1.3}_{-1.1}$~$M_{J}$ for the L dwarf. Our measurements of Luhman 16 ABs mass ratio and barycentric motion parameters are consistent with previous estimates in the literature utilizing recent astrometry only. The GeMS-derived measurements of the Luhman 16 AB separation in 2014-2015 agree closely with Hubble Space Telescope (HST) measurements made during the same epoch Bedin et al. 2017, and the derived mutual orbit agrees with those measurements to within the HST uncertainties of $0.3 - 0.4$ milliarcseconds.
The Transiting Exoplanet Survey Satellite (TESS) is an all-sky survey mission aiming to search for exoplanets that transit bright stars. The high-quality photometric data of TESS are excellent for the asteroseismic study of solar-like stars. In this work, we present an asteroseismic analysis of the red-giant star HD~222076 hosting a long-period (2.4 yr) giant planet discovered through radial velocities. Solar-like oscillations of HD~222076 are detected around $203 , mu$Hz by TESS for the first time. Asteroseismic modeling, using global asteroseismic parameters as input, yields a determination of the stellar mass ($M_star = 1.12 pm 0.12, M_odot$), radius ($R_star = 4.34 pm 0.21,R_odot$), and age ($7.4 pm 2.7,$Gyr), with precisions greatly improved from previous studies. The period spacing of the dipolar mixed modes extracted from the observed power spectrum reveals that the star is on the red-giant branch burning hydrogen in a shell surrounding the core. We find that the planet will not escape the tidal pull of the star and be engulfed into it within about $800,$Myr, before the tip of the red-giant branch is reached.
The Transiting Exoplanet Survey Satellite (TESS) is observing bright known planet-host stars across almost the entire sky. These stars have been subject to extensive ground-based observations, providing a large number of radial velocity (RV) measurements. In this work we use the new TESS photometric observations to characterize the star $lambda^2$ Fornacis, and following this to update the parameters of the orbiting planet $lambda^2$ For b. We measure the p-mode oscillation frequencies in $lambda^2$ For, and in combination with non-seismic parameters estimate the stellar fundamental properties using stellar models. Using the revised stellar properties and a time series of archival RV data from the UCLES, HIRES and HARPS instruments spanning almost 20 years, we refit the orbit of $lambda^2$ For b and search the RV residuals for remaining variability. We find that $lambda^2$ For has a mass of $1.16pm0.03$M$_odot$ and a radius of $1.63pm0.04$R$_odot$, with an age of $6.3pm0.9$Gyr. This and the updated RV measurements suggest a mass of $lambda^2$ For b of $16.8^{+1.2}_{-1.3}$M$_oplus$, which is $sim5$M$_oplus$ less than literature estimates. We also detect a periodicity at 33 days in the RV measurements, which is likely due to the rotation of the host star. While previous literature estimates of the properties of $lambda^2$ are ambiguous, the asteroseismic measurements place the star firmly at the early stage of its subgiant evolutionary phase. Typically only short time series of photometric data are available from TESS, but by using asteroseismology it is still possible to provide tight constraints on the properties of bright stars that until now have only been observed from the ground. This prompts a reexamination of archival RV data from the past few decades to update the characteristics of the planet hosting systems observed by TESS for which asteroseismology is possible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا