Tuning electronic correlations in transition metal pnictides: chemistry beyond the valence count


Abstract in English

The effects of electron-electron correlations on the low-energy electronic structure and their relationship with unconventional superconductivity are central aspects in the research on the iron-based pnictide superconductors. Here we use soft X-ray angle-resolved photoemission spectroscopy (SX-ARPES) to study how electronic correlations evolve in different chemically substituted iron pnictides. We find that correlations are intrinsically related to the effective filling of the correlated orbitals, rather than to the filling obtained by valence counting. Combined density functional theory (DFT) and dynamical mean-field theory (DMFT) calculations capture these effects, reproducing the experimentally observed trend in the correlation strength. The occupation-driven trend in the electronic correlation reported in our work supports the recently proposed connection between cuprate and pnictides phase diagrams.

Download