Do you want to publish a course? Click here

Measuring $CP$ violation and mixing in charm with inclusive self-conjugate multibody decay modes

239   0   0.0 ( 0 )
 Added by Guy Wilkinson
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Time-dependent studies of inclusive charm decays to multibody self-conjugate final states can be used to determine the indirect $CP$-violating observable $A_Gamma$ and the mixing observable $y_{CP}$, provided that the fractional $CP$-even content of the final state, $F_+$, is known. This approach can yield significantly improved sensitivity compared with the conventional method that relies on decays to $CP$ eigenstates. In particular, $D to pi^+pi^-pi^0$ appears to be an especially powerful channel, given its relatively large branching fraction and the high value of $F_+$ that has recently been measured at charm threshold.



rate research

Read More

102 - Gauthier Durieux 2016
Beauty baryons are being observed in large numbers in the LHCb detector. The rich kinematic distributions of their multibody decays are therefore becoming accessible and provide us with new opportunities to search for CP violation. We analyse the angular distributions of some three- and four-body decays of spin-$1/2$ baryons using the Jacob-Wick helicity formalism. The asymmetries that provide access to small differences of CP-odd phases between decay amplitudes of identical CP-even phases are notably discussed. The understanding gained on processes featuring specific resonant intermediate states allows us to establish which asymmetries are relevant for what purpose. It is for instance shown that some CP-odd angular asymmetries measured by the LHCb collaboration in the $Lambda_b to Lambda,varphi to p,pi, K^+ K^-$ decay are expected to vanish identically.
We propose a novel method to measure flavor-oscillations and charge-parity (CP) violation in charm mixing. The approach uses multibody charm decays, such as $D^0to K_S^0pi^+pi^-$, and avoids the need for a fit of the decay amplitudes while suppressing biases due to nonuniform signal-reconstruction efficiencies as functions of phase space and decay time. Data are partitioned in decay-time and Dalitz-plot regions (bins). The Dalitz-plot bins are symmetric with respect to the principal bisector and chosen to ensure nearly constant values of the strong-interaction phases in each. The ratios of signal yields observed in each symmetric bin pair are fit as functions of decay time, using independent auxiliary measurements of the strong-interaction phases as constraints, to determine the relevant physics parameters. Simulation shows that this approach improves the sensitivity to the normalized charm-eigenstate mass difference by 35% with respect to existing model-independent methods. In addition, we introduce a parametrization of oscillation and CP-violation effects in charm mixing that has attractive statistical properties and may find wider applicability.
In recent years charm physics has undergone a renaissance, one which has been catalysed by an unexpected and impressive set of experimental results from the $B$-factories, the Tevatron and LHCb. The existence of $D^0bar{D}{}^0$ oscillations is now well established, and the recent discovery of $CP$ violation in $D^0$ decays has further renewed interest in the charm sector. In this article we review the current status of charm-mixing and $CP$-violation measurements, and assess their agreement with theoretical predictions within the Standard Model and beyond. We look forward to the great improvements in experimental precision that can be expected over the coming two decades, and the prospects for corresponding advances in theoretical understanding.
170 - Brian Meadows 2008
The phenomenon of mixing in neutral meson systems has now been observed in all flavours, but only in the past year in the D0 system. The standard model anticipated that, for the charm sector, the mixing rate would be small, and also that CP violation, either in mixing or in direct decay, would be below the present levels of observability. It is hoped that further study of these phenomena might reveal signs of new physics. A review of recently available, experimental results is given.
64 - Stefano Bianco 2000
We present a summary of recent results on CP violation and mixing in the charm quark sector based on a high statistics sample collected by photoproduction experiment FOCUS (E831 at Fermilab). We have measured the difference in lifetimes for the $D^0$ decays: $D^0 to K^-pi^+$ and $D^0 to K^-K^+$. This translates into a measurement of the $y_{CP}$ mixing parameter in the $d0d0$ system, under the assumptions that $K^-K^+$ is an equal mixture of CP odd and CP even eigenstates, and CP violation is negligible in the neutral charm meson system. We verified the latter assumption by searching for a CP violating asymmetry in the Cabibbo suppressed decay modes $D^+ to K^-K^+pi^+$, $D^0 to K^-K^+$ and $D^0 to pi^-pi^+$. We show preliminary results on a measurement of the branching ratio $Gamma(D^{*+}to pi^+ (K^+pi^-))/Gamma(D^{*+}to pi^+ (K^-pi^+))$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا