Do you want to publish a course? Click here

On the Blue Loops of Intermediate-Mass Stars

495   0   0.0 ( 0 )
 Added by Joseph Walmswell Dr
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the blue loops in the Hertzsprung-Russell diagram that occur when intermediate-mass stars begin core helium burning. It has long been known that the excess of helium above the burning shell, the result of the contraction of the convective core during core hydrogen burning, has the effect of making such stars redder and larger than they would be otherwise. The outward motion of the burning shell in mass removes this excess and triggers the loop. Hitherto nobody has attempted to demonstrate why the excess helium has this effect. We consider the effect of the local opacity, which is reduced by excess helium, the shell fuel supply, which is also reduced, and the local mean molecular weight, which is increased. We demonstrate that the mean molecular weight is the decisive reddening factor. The opacity has a much smaller effect and a reduced fuel supply actually favours blueward motion.



rate research

Read More

Aims. In this paper, we aim to measure the strength of the surface magnetic fields for a sample of five intermediate mass T Tauri stars and one low mass T Tauri star from late-F to mid-K spectral types. While magnetic fields of T Tauri stars at the low mass range have been extensively characterized, our work complements previous studies towards the intermediate mass range; this complementary study is key to evaluate how magnetic fields evolve during the transition from a convective to a radiative core. Methods. We studied the Zeeman broadening of magnetically sensitive spectral lines in the H-band spectra obtained with the CRIRES high-resolution near-infrared spectrometer. These data are modelled using magnetic spectral synthesis and model atmospheres. Additional constraints on non-magnetic line broadening mechanisms are obtained from modelling molecular lines in the K band or atomic lines in the optical wavelength region. Results. We detect and measure mean surface magnetic fields for five of the six stars in our sample: CHXR 28, COUP 107, V2062 Oph, V1149 Sco, and Par 2441. Magnetic field strengths inferred from the most magnetically sensitive diagnostic line range from 0.8 to 1.8 kG. We also estimate a magnetic field strength of 1.9 kG for COUP 107 from an alternative diagnostic. The magnetic field on YLW 19 is the weakest in our sample and is marginally detected, with a strength of 0.8 kG. Conclusions. We populate an uncharted area of the pre-main-sequence HR diagram with mean magnetic field measurements from high-resolution near-infrared spectra. Our sample of intermediate mass T Tauri stars in general exhibits weaker magnetic fields than their lower mass counterparts. Our measurements will be used in combination with other spectropolarimetric studies of intermediate mass and lower mass T Tauri stars to provide input into pre-main-sequence stellar evolutionary models.
Abridged: Observed abundances of extremely metal-poor (EMP) stars in the Halo hold clues for the understanding of the ancient universe. Interpreting these clues requires theoretical stellar models at the low-Z regime. We provide the nucleosynthetic yields of intermediate-mass Z=$10^{-5}$ stars between 3 and 7.5 $M_{sun}$, and quantify the effects of the uncertain wind rates. We expect these yields can be eventually used to assess the contribution to the chemical inventory of the early universe, and to help interpret abundances of selected C-enhanced EMP stars. By comparing our models and other existing in the literature, we explore evolutionary and nucleosynthetic trends with wind prescriptions and with initial metallicity. We compare our results to observations of CEMP-s stars belonging to the Halo. The yields of intermediate-mass EMP stars reflect the effects of very deep second dredge-up (for the most massive models), superimposed with the combined signatures of hot-bottom burning and third dredge-up. We confirm the reported trend that models with initial metallicity Z$_{ini}$ <= 0.001 give positive yields of $^{12}C, ^{15}N, ^{16}O$, and $^{26}Mg$. The $^{20}Ne, ^{21}Ne$, and $^{24}Mg$ yields, which were reported to be negative at Z$_{ini}$ = 0.0001, become positive for Z=$10^{-5}$. The results using two different prescriptions for mass-loss rates differ widely in terms of the duration of the thermally-pulsing (Super) AGB phase, overall efficiency of the third dredge-up episode, and nucleosynthetic yields. The most efficient of the standard wind rates frequently used in the literature seems to favour agreement between our yield results and observational data. Regardless of the wind prescription, all our models become N-enhanced EMP stars.
Calculations from stellar evolutionary models of low- and intermediate-mass asymptotic giant branch (AGB) stars provide predictions of elemental abundances and yields for comparison to observations. However, there are many uncertainties that reduce the accuracy of these predictions. One such uncertainty involves the treatment of low-temperature molecular opacities that account for the surface abundance variations of C, N, and O. A number of prior calculations of intermediate-mass AGB stellar models that incorporate both efficient third dredge-up and hot bottom burning include a molecular opacity treatment which does not consider the depletion of C and O due to hot bottom burning. Here we update the molecular opacity treatment and investigate the effect of this improvement on calculations of intermediate-mass AGB stellar models. We perform tests on two masses, 5 M$_{odot}$ and 6 M$_{odot}$, and two metallicities, $Z~=~0.001$ and $Z~=~0.02$, to quantify the variations between two opacity treatments. We find that several evolutionary properties (e.g. radius, $T_{rm eff}$ and $T_{rm bce}$) are dependent on the opacity treatment. Larger structural differences occur for the $Z~=~0.001$ models compared to the $Z~=~0.02$ models indicating that the opacity treatment has a more significant effect at lower metallicity. As a consequence of the structural changes, the predictions of isotopic yields are slightly affected with most isotopes experiencing changes up to 60 per cent for the $Z~=~0.001$ models and 20 per cent for the $Z~=~0.02$ models. Despite this moderate effect, we conclude that it is more fitting to use variable molecular opacities for models undergoing hot bottom burning.
The Kepler and TESS missions delivered high-precision, long-duration photometric time series for hundreds of main-sequence stars with gravito-inertial (g) pulsation modes. This high precision allows us to evaluate increasingly detailed theoretical stellar models. Recent theoretical work extended the traditional approximation of rotation (TAR), a framework to evaluate the effect of the Coriolis acceleration on g-modes, to include the effects of the centrifugal acceleration in the approximation of slightly deformed stars, which so far had mostly been neglected in asteroseismology. This extension of the TAR was conceived by rederiving the TAR in a centrifugally deformed, spheroidal coordinate system. We explore the effect of the centrifugal acceleration on g modes and assess its detectability in space-based photometry. We implement the new framework to calculate the centrifugal deformation of precomputed 1D spherical stellar structure models and compute the corresponding g-mode frequencies, assuming uniform rotation. The framework is evaluated for a grid of stellar structure models covering a relevant parameter space for observed g-mode pulsators. The centrifugal acceleration modifies the effect of the Coriolis acceleration on g modes, narrowing the equatorial band in which they are trapped. Furthermore, the centrifugal acceleration causes the pulsation periods and period spacings of the most common g modes (prograde dipole modes and r modes) to increase with values similar to the observational uncertainties in Kepler and TESS data. The effect of the centrifugal acceleration on g~modes is formally detectable in modern space photometry. Implementation of the new theoretical framework in stellar structure and pulsation codes will allow for more precise asteroseismic modelling of centrifugally deformed stars, to assess its effect on mode excitation, -trapping and -damping.
Context. While rotation has a major impact on stellar structure and evolution, its effects are not well understood. Thanks to high- quality and long timebase photometric observations obtained with recent space missions, we are now able to study stellar rotation more precisely. Aims. We aim to constrain radial differential rotation profiles in gamma Doradus (gamma Dor) stars, and to develop new theoretical seismic diagnosis for such stars with rapid and potentially non-uniform rotation. Methods. We derive a new asymptotic description which accounts for the impact of weak differential near-core rotation on gravity- mode period spacings. The theoretical predictions are illustrated from pulsation computations with the code GYRE and compared with observations of gamma Dor stars. When possible, we also derive the surface rotation rates in these stars by detecting and analysing signatures of rotational modulation, and compute the core-to-surface rotation ratios. Results. Stellar rotation has to be strongly differential before its effects on period spacing patterns can be detected, unless multiple period spacing patterns can be compared. Six stars in our sample exhibit a single unexplained period spacing pattern of retrograde modes. We hypothesise that these are Yanai modes. Finally, we find signatures of rotational spot modulation in the photometric data of eight targets. Conclusions. If only one period spacing pattern is detected and analysed for a star, it is difficult to detect differential rotation. A rigidly rotating model will often provide the best solution. Differential rotation can only be detected when multiple period spacing patterns have been found for a single star or its surface rotation rate is known as well. This is the case for eight stars in our sample, revealing surface-to-core rotation ratios between 0.95 and 1.05.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا