Do you want to publish a course? Click here

A combined experimental and theoretical study of the electronic and vibrational properties of bulk and few-layer Td-WTe2

118   0   0.0 ( 0 )
 Added by C.N.R. Rao Prof
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent discovery of non-saturating giant positive magnetoresistance in Td-WTe2 has aroused great interest in this material. We have studied the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2 experimentally and theoretically. Spin-orbit coupling is found to govern the semi-metallic character of Td-WTe2. Its structural link with the metallic 1T form provides an understanding of its structural stability. We observe a metal to insulator transition and a change in the sign of the Seebeck coefficient around 373 K. Lattice vibrations in Td-WTe2 have been analyzed by first principle calculations. Out of the 33 possible zone-center Raman active modes, five distinct Raman bands are observed around 112, 118, 134, 165 and 212 cm-1 in bulk Td-WTe2. Based on symmetry analysis and the calculated Raman tensors, we assign the intense bands at 165 cm-1 and 212 cm-1 to the A_1^ and A_1^ modes respectively. We have examined the effect of temperature and the number of layers on the Raman spectrum. Most of the bands of Td-WTe2 stiffen, and the ratio of the integrated intensities of the A_1^ to A_1^ bands decreases in the few-layer sample, while all the bands soften in both bulk and few-layer samples with increasing temperature.



rate research

Read More

We report first principle calculations of electronic and mechanical properties of few-layer borophene with the inclusion of interlayer van der Waals (vdW) interaction. The anisotropic metallic behaviors are preserved from monolayer to few-layer structures. The energy splitting of bilayer borophene at $Gamma$ point near the Fermi level is about 1.7 eV, much larger than the values (0.5--1 eV) of other layered semiconductors, indicating much stronger vdW interactions in metallic layered borophene. In particular, the critical strains are enhanced by increasing the number of layers, leading to much more flexibility than that of monolayer structure. On the one hand, because of the buckled atomic structures, the out-of-plane negative Poissons ratios are preserved as the layer-number increases. On the other hand, we find that the in-plane negative Poissons ratios disappear in layered borophene, which is very different from puckered black phosphorus. The negative Poissons ratio will recover if we enlarge the interlayer distance to 6.3 $mboxAA$, indicating that the physical origin behind the change of Poissons ratios is the strong interlayer vdW interactions in layered borophene.
When a crystal becomes thinner and thinner to the atomic level, peculiar phenomena discretely depending on its layer-numbers (n) start to appear. The symmetry and wave functions strongly reflect the layer-numbers and stacking order, which brings us a potential of realizing new properties and functions that are unexpected in either bulk or simple monolayer. Multilayer WTe2 is one such example exhibiting unique ferroelectricity and non-linear transport properties related to the antiphase stacking and Berry-curvature dipole. Here we investigate the electronic band dispersions of multilayer WTe2 (2-5 layers), by performing laser-based micro-focused angle-resolved photoelectron spectroscopy on exfoliated-flakes that are strictly sorted by n and encapsulated by graphene. We clearly observed the insulator-semimetal transition occurring between 2- and 3-layers, as well as the 30-70 meV spin-splitting of valence bands manifesting in even n as a signature of stronger structural asymmetry. Our result fully demonstrates the possibility of the large energy-scale band and spin manipulation through the finite n stacking procedure.
The electronic and thermoelectric properties of one to four monolayers of MoS$_{2}$, MoSe$_{2}$, WS$_{2}$, and WSe$_{2}$ are calculated. For few layer thicknesses,the near degeneracies of the conduction band $K$ and $Sigma$ valleys and the valence band $Gamma$ and $K$ valleys enhance the n-type and p-type thermoelectric performance. The interlayer hybridization and energy level splitting determine how the number of modes within $k_BT$ of a valley minimum changes with layer thickness. In all cases, the maximum ZT coincides with the greatest near-degeneracy within $k_BT$ of the band edge that results in the sharpest turn-on of the density of modes. The thickness at which this maximum occurs is, in general, not a monolayer. The transition from few layers to bulk is discussed. Effective masses, energy gaps, power-factors, and ZT values are tabulated for all materials and layer thicknesses.
Irradiation with high energy photons (10.2 - 11.8 eV) was applied to small diamondoids isolated in solid rare gas matrices at low temperature. The photoproducts were traced via UV absorption spectroscopy. We found that upon ionization the smallest of these species lose a peripheral H atom to form a stable closed-shell cation. This process is also likely to occur under astrophysical conditions for gas phase diamondoids and it opens the possibility to detect diamond-like molecules using their rotational spectrum since the dehydrogenated cations possess strong permanent dipole moments. The lowest-energy electronic features of these species in the UV were found to be rather broad, shifting to longer wavelengths with increasing molecular size. Calculations using time-dependent density functional theory support our experimental findings and extend the absorption curves further into the vacuum ultraviolet. The complete sigma - sigma* spectrum displays surprisingly strong similarities to meteoritic nanodiamonds containing 50 times more C atoms.
Laser-based angle-resolved photoemission spectroscopy (ARPES) and two-photon photoemission spectroscopy (2PPES) are employed to study the valence electronic structure of the Weyl semimetal candidate Td-WTe$_2$ along two high symmetry directions and for binding energies between $approx$ -1 eV and 5 eV. The experimental data show a good agreement with band structure calculations. Polarization dependent measurements provide furthermore information on initial and intermediate state symmetry properties with respect to the mirror plane of the Td structure of WTe$_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا