Do you want to publish a course? Click here

Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material

247   0   0.0 ( 0 )
 Added by Siyuan Dai
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. In such materials light propagation is unusual, leading to novel and often non-intuitive optical phenomena. Here we report infrared nano-imaging experiments demonstrating that crystals of hexagonal boron nitride (hBN), a natural mid-infrared hyperbolic material, can act as a hyper-focusing lens and as a multi-mode waveguide. The lensing is manifested by subdiffractional focusing of phonon-polaritons launched by metallic disks underneath the hBN crystal. The waveguiding is revealed through the modal analysis of the periodic patterns observed around such launchers and near the sample edges. Our work opens new opportunities for anisotropic layered insulators in infrared nanophotonics complementing and potentially surpassing concurrent artificial hyperbolic materials with lower losses and higher optical localization.



rate research

Read More

We show that the axial component of the magnetic permeability tensor is resonant for a wire medium consisting of high-index epsilon-positive nanowires, and its real part changes the sign at a certain frequency. At this frequency the medium experiences the topological transition from the hyperbolic to the elliptic type of dispersion. We show that the transition regime is characterized by extremely strong dependence of the permeability on the wave vector. This implies very high density of electromagnetic states that results in the filamentary pattern and noticeable Purcell factor for a transversely oriented magnetic dipole.
We study theoretically optomechanical interactions in a semiconductor microcavity with embedded quantum well under the optical pumping by a Bessel beam, carrying a non-zero orbital momentum. Due to the transfer of orbital momentum from light to phonons, the microcavity can act as an acoustic circulator: it rotates the propagation direction of the incident phonon by a certain angle clockwise or anticlockwise. Due to the optomechanical heating and cooling effects, the circulator can also function as an acoustic laser emitting sound with nonzero angular momentum. Our calculations demonstrate the potential of semiconductor microcavities for compact integrable optomechanical devices.
We demonstrate a new type of transition within the strong coupling regime, which alters the coupling mechanism in multimode cavities. We show that this transition drastically modifies the Hamiltonian describing the polaritons, such that different cavity modes are either entangled via the material or completely decoupled. This decoupling transition occurs due to the competition between the dissipation in the material and the finite group velocity, which governs the propagation of information across the cavity and among the molecules. The results indicate that the velocity of light, which is often not taken into account in cavity quantum electrodynamics, plays a crucial role in the formation of cavity polaritons and their dynamics.
Topological materials rely on engineering global properties of their bulk energy bands called topological invariants. These invariants, usually defined over the entire Brillouin zone, are related to the existence of protected edge states. However, for an important class of Hamiltonians corresponding to 2D lattices with time-reversal and chiral symmetry (e.g. graphene), the existence of edge states is linked to invariants that are not defined over the full 2D Brillouin zone, but on reduced 1D sub-spaces. Here, we demonstrate a novel scheme based on a combined real- and momentum-space measurement to directly access these 1D topological invariants in lattices of semiconductor microcavities confining exciton-polaritons. We extract these invariants in arrays emulating the physics of regular and critically compressed graphene sucht that Dirac cones have merged. Our scheme provides a direct evidence of the bulk-edge correspondence in these systems, and opens the door to the exploration of more complex topological effects, for example involving disorder and interactions.
We use an ab-initio approach to design and study a novel two-dimensional material - a planar array of carbon nanotubes separated by an optimal distance defined by the van der Waals interaction. We show that the energy spectrum for an array of quasi-metallic nanotubes is described by a strongly anisotropic hyperbolic dispersion and formulate a model low-energy Hamiltonian for its semi-analytical treatment. Periodic-potential-induced lifting of the valley degeneracy for an array of zigzag narrow-gap nanotubes leads to the band gap collapse. In contrast, the band gap is opened in an array of gapless armchair tubes. These unusual spectra, marked by pronounced van Hove singularities in the low-energy density of states, open the opportunity for interesting physical effects and prospective optoelectronic applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا