Do you want to publish a course? Click here

Shedding new light on the Sun with the Fermi LAT

213   0   0.0 ( 0 )
 Added by Nicola Omodei
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

During its first six years of operation, the Fermi Large Area Telescope (LAT) has detected >30 MeV gamma-ray emission from more than 40 solar flares, nearly a factor of 10 more than those detected by EGRET. These include detections of impulsive and sustained emissions, extending up to 20 hours in the case of the 2012 March 7 X-class flares. We will present an overview of solar flare detections with LAT, highlighting recent results and surprising features, including the detection of >100 MeV emission associated with flares located behind the limb. Such flares may shed new light on the relationship between the sites of particle acceleration and gamma-ray emission.



rate research

Read More

Strong magnetic fields, synchrotron emission, and Compton scattering are omnipresent in compact celestial X-ray sources. Emissions in the X-ray energy band are consequently expected to be linearly polarized. X-ray polarimetry provides a unique diagnostic to study the location and fundamental mechanisms behind emission processes. The polarization of emissions from a bright celestial X-ray source, the Crab, is reported here for the first time in the hard X-ray band (~20-160 keV). The Crab is a complex system consisting of a central pulsar, a diffuse pulsar wind nebula, as well as structures in the inner nebula including a jet and torus. Measurements are made by a purpose-built and calibrated polarimeter, PoGO+. The polarization vector is found to be aligned with the spin axis of the pulsar for a polarization fraction, PF = (20.9 $pm$ 5.0)%. This is higher than that of the optical diffuse nebula, implying a more compact emission site, though not as compact as, e.g., the synchrotron knot. Contrary to measurements at higher energies, no significant temporal evolution of phase-integrated polarisation parameters is observed. The polarization parameters for the pulsar itself are measured for the first time in the X-ray energy band and are consistent with observations at optical wavelengths.
The Fermi Large Area Telescope (LAT) is a powerful pulsar detector, as demonstrated by the over one hundred objects in its second catalog of pulsars. Pass 8 is a new reconstruction and event selection strategy developed by the Fermi-LAT collaboration. Due to the increased acceptance at low energy, Pass 8 improves the pulsation detection sensitivity. Ten new pulsars rise above the 5 sigma threshold and are presented in this work, as well as one previously seen with the former Pass 7 reconstruction. More than 60$%$ of the known pulsars with spin-down power ($dot{E}$) greater than $10^{36}$ erg/s show pulsations in gamma-rays, as seen with the Fermi Large Area Telescope. Many non-detections of these energetic pulsars are thought to be a consequence of a high background level, or a large distance leading to a flux below the sensitivity limit of the instrument. The gamma-ray beams of the others probably miss the Earth. The new Pass 8 data now allows the detection of gamma ray pulsations from three of these high spin-down pulsars, PSRs J1828$-$1101, J1831$-$0952 and J1837$-$0604, as well as three others with $dot{E}$ $ge 10^{35}$ erg/s. We report on their properties and we discuss the reasons for their detection with Pass 8.
LS 5039 is a well-known $gamma$-ray binary system which consists of an unknown compact object and a massive companion O star. It shows rather stable emissions at high energies over years and hence serves as an ideal laboratory to investigate the emission mechanism for such peculiar systems which emit prominent $gamma$-rays. To this end, we take the orbital phase resolved energy spectrum as observed by fermi over 10 years. We divide the orbit into four orbital phases, each with an orbital phase range of 0.25, centered at 0.00, 0.25, 0.50 and 0.75 respectively, where the phase 0.0 is the periastron and phase 0.5 is the apastron. The phases around 0.25 and 0.75 are symmetric and hence are supposed to have identical local acceleration environment. The spectral analysis shows that, the fermi spectra are largely different from these two symmetric orbital phases: the emission from orbital phase 0.25 turns out to be significantly stronger than that from 0.75. This result does not fit a scenario that $gamma$-rays are Doppler boosted emission from bow shock tails if LS 5039 has a shock configuration similar to PSR B1259-63, and indicates that the inverse Compton scatterings between the shock accelerated plasma and the stellar particle environment is the underline procedure. We also find that the previous report for a disappearance of the orbital modulation at 3--20 GeV is due to the similar spectral turn-over energies of the different orbital phases. The spectral properties of periastron and apastron regions are addressed in the context of the measurements in phase regions around 0.25 and 0.75.
We report on gamma-ray analysis of the region containing the bright TeV source HESS J1640-465 and the close-by TeV source HESS J1641-463 using 64 months of observations with the Fermi Large Area Telescope (LAT). Previously only one GeV source was reported in this region and was associated with HESS J1640-465. With an increased dataset and the improved sensitivity afforded by the reprocessed data (P7REP) of the LAT, we now report the detection, morphological study and spectral analysis of two distinct sources above 100 MeV. The softest emission in this region comes from the TeV source HESS J1641-463 which is well fitted with a power law of index Gamma = 2.47 +/- 0.05 +/- 0.06 and presents no significant gamma-ray signal above 10 GeV, which contrasts with its hard spectrum at TeV energies. The Fermi-LAT spectrum of the second TeV source, HESS J1640-465 is well described by a power-law shape of index Gamma = 1.99 +/- 0.04 +/- 0.07 that links up naturally with the spectral data points obtained by the High Energy Stereoscopic System (H.E.S.S.). These new results provide new constraints concerning the identification of these two puzzling gamma-ray sources.
The HAWC (High Altitude Water Cherenkov) collaboration recently published their 2HWC catalog, listing 39 very high energy (VHE; >100~GeV) gamma-ray sources based on 507 days of observation. Among these, there are nineteen sources that are not associated with previously known TeV sources. We have studied fourteen of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-ray emission in the 1~TeV-30~TeV band in the region of DA 495, a pulsar wind nebula coinciding with 2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the selected fourteen new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the search, we detected GeV gamma-ray emission coincident with a known TeV pulsar wind nebula, SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric Cherenkov telescopes. However, the VERITAS fluxes for SNR G54.1+0.3, DA 495, and TeV J2032+4130 are lower than those measured by HAWC and several new HAWC sources are not detected by VERITAS. This is likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا