Routinely operating since July 2012, the APACHE survey has celebrated its second birthday. While the main goal of the Project is the detection of transiting planets around a large sample of bright, nearby M dwarfs in the northern hemisphere, the APACHE large photometric database for hundreds of different fields represents a relevant resource to search for and provide a first characterization of new variable stars. We celebrate here the conclusion of the second year of observations by reporting the discovery of 14 new variables.
We present results from a season of observations with the Chinese Small Telescope ARray (CSTAR), obtained over 183 days of the 2010 Antarctic winter. We carried out high-cadence time-series aperture photometry of 20,000 stars with i<15.3 mag located in a 23 square-degree region centered on the south celestial pole. We identified 188 variable stars, including 67 new objects relative to our 2008 observations, thanks to broader synoptic coverage, a deeper magnitude limit and a larger field of view. We used the photometric data set to derive site statistics from Dome A. Based on two years of observations, we find that extinction due to clouds at this site is less than 0.1 and 0.4 mag during 45% and 75% of the dark time, respectively.
This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the $J$-, $H$- and $K_s$- bands obtained from the Vista Variables in the Via Lactea (VVV) Survey. We performed in each cluster field a variability search using Stetsons variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude $(J-K_s,K_s)$ and color-color $(H-K_s,J-H)$ diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, $delta$ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the Physics Of Eclipsing Binaries (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately $80^{circ}$. Their surface temperatures range between $3500$K and $8000$K.
OmegaWhite is a wide-field, high cadence, synoptic survey targeting fields in the southern Galactic plane, with the aim of discovering short period variable stars. Our strategy is to take a series of 39 s exposures in the g band of a 1 square degree of sky lasting 2 h using the OmegaCAM wide field imager on the VLT Survey Telescope (VST). We give an overview of the initial 4 years of data which covers 134 square degrees and includes 12.3 million light curves. As the fields overlap with the VLT Survey Telescope Halpha Photometric Survey of the Galactic plane and Bulge (VPHAS+), we currently have $ugriHalpha$ photometry for ~1/3 of our fields. We find that a significant fraction of the light curves have been affected by the diffraction spikes of bright stars sweeping across stars within a few dozen of pixels over the two hour observing time interval due to the alt-az nature of the VST. We select candidate variable stars using a variety of variability statistics, followed by a manual verification stage. We present samples of several classes of short period variables, including: an ultra compact binary, a DQ white dwarf, a compact object with evidence of a 100 min rotation period, three CVs, one eclipsing binary with an 85 min period, a symbiotic binary which shows evidence of a 31 min photometric period, and a large sample of candidate delta Sct type stars including one with a 9.3 min period. Our overall goal is to cover 400 square degrees, and this study indicates we will find many more interesting short period variable stars as a result.
The latest Gaia data release enables us to accurately identify stars that are more luminous than would be expected on the basis of their spectral type and distance. During an investigation of the 329 best Solar twin candidates uncovered among the spectra acquired by the GALAH survey, we identified 64 such over-luminous stars. In order to investigate their exact composition, we developed a data-driven methodology that can generate a synthetic photometric signature and spectrum of a single star. By combining multiple such synthetic stars into an unresolved binary or triple system and comparing the results to the actual photometric and spectroscopic observations, we uncovered 6 definitive triple stellar system candidates and an additional 14 potential candidates whose combined spectrum mimics the Solar spectrum. Considering the volume correction factor for a magnitude limited survey, the fraction of probable unresolved triple stars with long orbital periods is ~2 %. Possible orbital configurations of the candidates were investigated using the selection and observational limits. To validate the discovered multiplicity fraction, the same procedure was used to evaluate the multiplicity fraction of other stellar types.
M. Damasso
,L. Gioannini
,A. Bernagozzi
.
(2015)
.
"New Variable Stars Discovered by the APACHE Survey. II. Results After the Second Observing Season"
.
Mario Damasso
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا