Do you want to publish a course? Click here

Multiwavelength campaign on the HBL PKS 2155-304 : A new insight on its spectral energy distribution

125   0   0.0 ( 0 )
 Added by David Sanchez
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The blazar PKS~2155-304 was the target of a multiwavelength campaign from June to October 2013 which widely improves our knowledge of its spectral energy distribution. This campaign involved the NuSTAR satellite (3-79 keV), the Fermi Large Area Telescope (LAT, 100~MeV-300~GeV) and the High Energy Stereoscopic System (H.E.S.S.) array phase II (with an energy threshold of few tens of GeV). While the observations with NuSTAR extend the X-ray spectrum to higher energies than before, H.E.S.S. phase II, together with the use of the LAT PASS 8, enhance the coverage of the $gamma$-ray regime with an unprecedented precision. In this work, preliminary results from the multi-wavelength analysis are presented.



rate research

Read More

Multiwavelength (MWL) observations of the blazar PKS 2155-304 during two weeks in July and August 2006, the period when two exceptional flares at very high energies (VHE, E>= 100 GeV) occurred, provide a detailed picture of the evolution of its emission. The complete data set from this campaign is presented, including observations in VHE gamma-rays (H.E.S.S.), X-rays (RXTE, CHANDRA, SWIFT XRT), optical (SWIFT UVOT, Bronberg, Watcher, ROTSE), and in the radio band (NRT, HartRAO, ATCA). Optical and radio light curves from 2004 to 2008 are compared to the available VHE data from this period, to put the 2006 campaign into the context of the long-term evolution of the source. The X-ray and VHE gamma-ray emission are correlated during the observed high state of the source, but show no direct connection with longer wavelengths. The long-term flux evolution in the optical and radio bands is found to be correlated and shows that the source reaches a high state at long wavelengths after the occurrence of the VHE flares. Spectral hardening is seen in the SWIFT XRT data. The nightly averaged high-energy spectra of the non-flaring nights can be reproduced by a stationary one-zone SSC model, with only small variations in the parameters. The spectral and flux evolution in the high-energy band during the night of the second VHE flare is modelled with multi-zone SSC models, which can provide relatively simple interpretations for the hour time-scale evolution of the high-energy emission, even for such a complex data set. For the first time in this type of source, a clear indication is found for a relation between high activity at high energies and a long-term increase in the low frequency fluxes.
Axionlike particles (ALPs) are hypothetical light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ALPs can modify the energy spectrum of the gamma rays for a sufficiently large coupling between ALPs and photons. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac object PKS 2155-304 (z = 0.116) are used to derive upper limits at the 95% C.L. on the strength of the ALP coupling to photons, $g_{gamma a} < 2.1times 10^{-11}$ GeV$^{-1}$ for an ALP mass between 15 neV and 60 neV. The results depend on assumptions on the magnetic field around the source, which are chosen conservatively. The derived constraints apply to both light pseudoscalar and scalar bosons that couple to the electromagnetic field.
Observations of very high energy gamma-rays from blazars provide information about acceleration mechanisms occurring in their innermost regions. Studies of variability in these objects allow a better understanding of the mechanisms at play. To investigate the spectral and temporal variability of VHE (>100 GeV) gamma-rays of the well-known high-frequency-peaked BL Lac object PKS 2155-304 with the H.E.S.S. imaging atmospheric Cherenkov telescopes over a wide range of flux states. Data collected from 2005 to 2007 are analyzed. Spectra are derived on time scales ranging from 3 years to 4 minutes. Light curve variability is studied through doubling timescales and structure functions, and is compared with red noise process simulations. The source is found to be in a low state from 2005 to 2007, except for a set of exceptional flares which occurred in July 2006. The quiescent state of the source is characterized by an associated mean flux level of 4.32 +/-0.09 x 10^-11 cm^-2 s^-1 above 200 GeV, or approximately 15% of the Crab Nebula, and a power law photon index of 3.53 +/-0.06. During the flares of July 2006, doubling timescales of ~2 min are found. The spectral index variation is examined over two orders of magnitude in flux, yielding different behaviour at low and high fluxes,which is a new phenomenon in VHE gamma-ray emitting blazars. The variability amplitude characterized by the fractional r.m.s. is strongly energy-dependent and is proportional to E^(0.19 +/- 0.01). The light curve r.m.s. correlates with the flux. This is the signature of a multiplicative process which can be accounted for as a red noise with a Fourier index of ~2. This unique data set shows evidence for a low level gamma-ray emission state from PKS 2155-304, which possibly has a different origin than the outbursts. The discovery of the light curve lognormal behaviour might be an indicator ..
Time variability of the photon flux is a known feature of active galactic nuclei (AGN) and in particular of blazars. The high frequency peaked BL Lac (HBL) object PKS 2155-304 is one of the brightest sources in the TeV band and has been monitored regularly with different instruments and in particular with the H.E.S.S. experiment above 200 GeV for more than 11 years. These data together with the observations of other instruments and monitoring programs like SMARTS (optical), Swift-XRT/RXTE/XMM-Newton (X-ray) and Fermi-LAT (100 MeV < E < 300 GeV) are used to characterize the variability of this object in the quiescent state over a wide energy range. Variability studies are made by looking at the lognormality of the light curves and at the fractional root mean square (rms) variability Fvar in several energy bands. Lognormality is found in every energy range and the evolution of Fvar with the energy shows a similar increase both in X-rays and in TeV bands.
Optical, near-infrared, and radio observations of the BL Lac object PKS2155-304 were obtained simultaneously with a continuous UV/EUV/X-ray monitoring campaign in 1994 May. Further optical observations were gathered throughout most of 1994. The radio, millimeter, and near-infrared data show no strong correlations with the higher energies. The optical light curves exhibit flickering of 0.2-0.3 mag on timescales of 1-2 days, superimposed on longer timescale variations. Rapid variations of ~0.01 mag/min, which, if real, are the fastest seen to date for any BL Lac object. Small (0.2-0.3 mag) increases in the V and R bands occur simultaneously with a flare seen at higher energies. All optical wavebands (UBVRI) track each other well over the period of observation with no detectable delay. For most of the period the average colors remain relatively constant, although there is a tendency for the colors (in particular B-V) to vary more when the source fades. In polarized light, PKS 2155-304 showed strong color dependence and the highest optical polarization (U = 14.3%) ever observed for this source. The polarization variations trace the flares seen in the ultraviolet flux.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا