Do you want to publish a course? Click here

On the cosmic evolution of the specific star formation rate

267   0   0.0 ( 0 )
 Added by Matthew D. Lehnert
 Publication date 2015
  fields Physics
and research's language is English
 Authors M. D. Lehnert




Ask ChatGPT about the research

The apparent correlation between the specific star formation rate (sSFR) and total stellar mass (M_star) of galaxies is a fundamental relationship indicating how they formed their stellar populations. To attempt to understand this relation, we hypothesize that the relation and its evolution is regulated by the increase in the stellar and gas mass surface density in galaxies with redshift, which is itself governed by the angular momentum of the accreted gas, the amount of available gas, and by self-regulation of star formation. With our model, we can reproduce the specific SFR-M_star relations at z~1-2 by assuming gas fractions and gas mass surface densities similar to those observed for z=1-2 galaxies. We further argue that it is the increasing angular momentum with cosmic time that causes a decrease in the surface density of accreted gas. The gas mass surface densities in galaxies are controlled by the centrifugal support (i.e., angular momentum), and the sSFR is predicted to increase as, sSFR(z)=(1+z)^3/t_H0, as observed (where t_H0 is the Hubble time and no free parameters are necessary). At z>~2, we argue that star formation is self-regulated by high pressures generated by the intense star formation itself. The star formation intensity must be high enough to either balance the hydrostatic pressure (a rather extreme assumption) or to generate high turbulent pressure in the molecular medium which maintains galaxies near the line of instability (i.e. Toomre Q~1). The most important factor is the increase in stellar and gas mass surface density with redshift, which allows distant galaxies to maintain high levels of sSFR. Without a strong feedback from massive stars, such galaxies would likely reach very high sSFR levels, have high star formation efficiencies, and because strong feedback drives outflows, ultimately have an excess of stellar baryons (abridged).



rate research

Read More

We investigate the cosmic evolution of the absolute and specific star formation rate (SFR, sSFR) of galaxies as derived from a spatially-resolved study of the stellar populations in a set of 366 nearby galaxies from the CALIFA survey. The analysis combines GALEX and SDSS images with the 4000 break, H_beta, and [MgFe] indices measured from the datacubes, to constrain parametric models for the SFH, which are then used to study the cosmic evolution of the star formation rate density (SFRD), the sSFR, the main sequence of star formation (MSSF), and the stellar mass density (SMD). A delayed-tau model, provides the best results, in good agreement with those obtained from cosmological surveys. Our main results from this model are: a) The time since the onset of the star formation is larger in the inner regions than in the outer ones, while tau is similar or smaller in the inner than in the outer regions. b) The sSFR declines rapidly as the Universe evolves, and faster for early than for late type galaxies, and for the inner than for the outer regions of galaxies. c) SFRD and SMD agree well with results from cosmological surveys. At z< 0.5, most star formation takes place in the outer regions of late spiral galaxies, while at z>2 the inner regions of the progenitors of the current E and S0 are the major contributors to SFRD. d) The inner regions of galaxies are the major contributor to SMD at z> 0.5, growing their mass faster than the outer regions, with a lookback time at 50% SMD of 9 and 6 Gyr for the inner and outer regions. e) The MSSF follows a power-law at high redshift, with the slope evolving with time, but always being sub-linear. f) In agreement with galaxy surveys at different redshifts, the average SFH of CALIFA galaxies indicates that galaxies grow their mass mainly in a mode that is well represented by a delayed-tau model, with the peak at z~2 and an e-folding time of 3.9 Gyr.
The relation between the stellar mass and the star formation rate characterizes how the instantaneous star formation is determined by the galaxy past star formation history and by the growth of the dark matter structures. We deconstruct the M-SFR plane by measuring the specific SFR functions in several stellar mass bins from z=0.2 out to z=1.4. Our analysis is primary based on a MIPS 24$mu m$ selected catalogue combining the COSMOS and GOODS surveys. We estimate the SFR by combining mid- and far-infrared data for 20500 galaxies. The sSFR functions are derived in four stellar mass bins within the range 9.5<log(M/Msun)<11.5. First, we demonstrate the importance of taking into account selection effects when studying the M-SFR relation. Secondly, we find a mass-dependent evolution of the median sSFR with redshift varying as $sSFR propto (1+z)^{b}$, with $b$ increasing from $b=2.88$ to $b=3.78$ between $M=10^{9.75}Msun$ and $M=10^{11.1}Msun$, respectively. At low masses, this evolution is consistent with the cosmological accretion rate and predictions from semi-analytical models (SAM). This agreement breaks down for more massive galaxies showing the need for a more comprehensive description of the star-formation history in massive galaxies. Third, we obtain that the shape of the sSFR function is invariant with time at z<1.4 but depends on the mass. We observe a broadening of the sSFR function ranging from 0.28 dex at $M=10^{9.75}Msun$ to 0.46 dex at $M=10^{11.1}Msun$. Such increase in the scatter of the M-SFR relation suggests an increasing diversity of SFHs as the stellar mass increases. Finally, we find a gradual decline of the sSFR with mass as $log(sSFR) propto -0.17M$. We discuss the numerous physical processes, as gas exhaustion in hot gas halos or secular evolution, which can gradually reduce the sSFR and increase the SFH diversity.
We explore how the estimated star formation rate (SFR) of a sample of isolated, massive dusty star-forming galaxies at early cosmic epochs ($1.5 < z < 3.5$) changes when their ultraviolet (UV) to near-infrared (NIR) spectral energy distribution is extended to longer wavelengths by adding far-infrared/sub-millimeter data to trace the reprocessed radiation from dust heated by young massive stars. We use large-area surveys with multi-wavelength datasets that include DECam UV-to-optical, VICS82 NIR, Spitzer-IRAC NIR, and Herschel-SPIRE far-infrared/sub-millimeter data. We find that the inclusion of far-infrared/sub-millimeter data leads to SFRs that span $sim$100-3500 $M_{odot} yr^{-1}$ and are higher than the extinction-corrected UV-based SFR by an average factor of $sim$3.5, and by a factor of over 10 in many individual galaxies. Our study demonstrates the importance of far-IR/sub-millimeter data for deriving accurate SFRs in massive dusty galaxies at early epochs, and underscores the need for next-generation far-IR/sub-millimeter facilities with high sensitivity, field of view, and angular resolution.
We simulate the collision of two Giant Molecular Clouds (GMCs) using the movingmesh magnetohydrodynamical (MHD) code AREPO. We perform a small parameterspace study on how GMC collisions affect the star formation rate (SFR). The pa-rameters we consider are relative velocity, magnetic field inclination and simulationresolution. From the collsional velocity study we find that a faster collision causes starformation to trigger earlier, however, the overall trend in star formation rate integratethrough time is similar for all. This contradicts the claim that the SFR significantlyincreases as a result of a cloud collision. From varying the magnetic field inclinationwe conclude that the onset of star formation occurs sooner if the magnetic field isparallel to the collisional axis. Resolution tests suggests that higher resolution delaysthe onset of star formation due to the small scale turbulence being more resolved.
As part of an on-going effort to identify, understand and correct for astrophysics biases in the standardization of Type Ia supernovae (SNIa) for cosmology, we have statistically classified a large sample of nearby SNeIa into those located in predominantly younger or older environments. This classification is based on the specific star formation rate measured within a projected distance of 1kpc from each SN location (LsSFR). This is an important refinement compared to using the local star formation rate directly as it provides a normalization for relative numbers of available SN progenitors and is more robust against extinction by dust. We find that the SNeIa in predominantly younger environments are DY=0.163pm0.029 mag (5.7 sigma) fainter than those in predominantly older environments after conventional light-curve standardization. This is the strongest standardized SN Ia brightness systematic connected to host-galaxy environment measured to date. The well-established step in standardized brightnesses between SNeIa in hosts with lower or higher total stellar masses is smaller at DM=0.119pm0.032 mag (4.5 sigma), for the same set of SNeIa. When fit simultaneously, the environment age offset remains very significant, with DY=0.129pm0.032 mag (4.0 sigma), while the global stellar mass step is reduced to DM=0.064pm0.029 mag (2.2 sigma). Thus, approximately 70% of the variance from the stellar mass step is due to an underlying dependence on environment-based progenitor age. Standardization using only the SNeIa in younger environments reduces the total dispersion from 0.142pm0.008 mag to 0.120pm0.010 mag. We show that as environment ages evolve with redshift a strong bias on measurement of the dark energy equation of state parameters can develop. Fortunately, data to measure and correct for this effect is likely to be available for many next-generation experiments. [abstract shorten]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا