Critical Casimir forces in the presence of random surface fields


Abstract in English

We study critical Casimir forces (CCF) $f_{mathrm C}$ for films of thickness $L$ which in the three-dimensional bulk belong to the Ising universality class and which are exposed to random surface fields (RSF) on both surfaces. We consider the case that, in the absence of RSF, the surfaces of the film belong to the surface universality class of the so-called ordinary transition. We carry out a finite-size scaling analysis and show that for weak disorder CCF still exhibit scaling, acquiring a random field scaling variable $w$ which is zero for pure systems. We confirm these analytic predictions by MC simulations. Moreover, our MC data show that $f_{mathrm C}$ varies as $f_{mathrm C}(wto 0)-f_{mathrm C}(w=0)sim w^2$. Asymptotically, for large $L$, $w$ scales as $w sim L^{-0.26} to 0$ indicating that this type of disorder is an irrelevant perturbation of the ordinary surface universality class. However, for thin films such that $w simeq 1$, we find that the presence of RSF with vanishing mean value increases significantly the strength of CCF, as compared to systems without them, and shifts the extremum of the scaling function of $f_{mathrm C}$ towards lower temperatures. But $f_{mathrm C}$ remains attractive.

Download