Do you want to publish a course? Click here

Probing the Bose-Glass--Superfluid Transition using Quantum Quenches of Disorder

140   0   0.0 ( 0 )
 Added by Brian DeMarco
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We probe the transition between superfluid and Bose glass phases using quantum quenches of disorder in an ultracold atomic lattice gas that realizes the disordered Bose-Hubbard model. Measurements of excitations generated by the quench exhibit threshold behavior in the disorder strength indicative of a phase transition. Ab-initio quantum Monte Carlo simulations confirm that the appearance of excitations coincides with the equilibrium superfluid--Bose-glass phase boundary at different lattice potential depths. By varying the quench time, we demonstrate the disappearance of an adiabatic timescale compared with microscopic parameters in the BG regime.



rate research

Read More

With the advent of spatially resolved fluorescence imaging in quantum gas microscopes, it is now possible to directly image glassy phases and probe the local effects of disorder in a highly controllable setup. Here we present numerical calculations using a spatially-resolved local mean-field theory, show that it captures the essential physics of the disordered system and use it to simulate the density distributions seen in single-shot fluorescence microscopy. From these simulated images we extract local properties of the phases which are measurable by a quantum gas microscope and show that unambiguous detection of the Bose glass is possible. In particular, we show that experimental determination of the Edwards-Anderson order parameter is possible in a strongly correlated quantum system using existing experiments. We also suggest modifications to the experiments which will allow further properties of the Bose glass to be measured.
We experimentally study the effect of disorder on trapped quasi two-dimensional (2D) 87Rb clouds in the vicinity of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The disorder correlation length is of the order of the Bose gas characteristic length scales (thermal de Broglie wavelength, healing length) and disorder thus modifies the physics at a microscopic level. We analyze the coherence properties of the cloud through measurements of the momentum distributions, for two disorder strengths, as a function of its degeneracy. For moderate disorder, the emergence of coherence remains steep but is shifted to a lower entropy. In contrast, for strong disorder, the growth of coherence is hindered. Our study is an experimental realization of the dirty boson problem in a well controlled atomic system suitable for quantitative analysis.
Exploiting quantum properties to outperform classical ways of information-processing is an outstanding goal of modern physics. A promising route is quantum simulation, which aims at implementing relevant and computationally hard problems in controllable quantum systems. Here we demonstrate that in a trapped ion setup, with present day technology, it is possible to realize a spin model of the Mattis type that exhibits spin glass phases. Remarkably, our method produces the glassy behavior without the need for any disorder potential, just by controlling the detuning of the spin-phonon coupling. Applying a transverse field, the system can be used to benchmark quantum annealing strategies which aim at reaching the ground state of the spin glass starting from the paramagnetic phase. In the vicinity of a phonon resonance, the problem maps onto number partitioning, and instances which are difficult to address classically can be implemented.
We study the stability of the Wilson-Fisher fixed point of the quantum $mathrm{O}(2N)$ vector model to quenched disorder in the large-$N$ limit. While a random mass is strongly relevant at the Gaussian fixed point, its effect is screened by the strong interactions of the Wilson-Fisher fixed point. This enables a perturbative renormalization group study of the interplay of disorder and interactions about this fixed point. We show that, in contrast to the spiralling flows obtained in earlier double-$epsilon$ expansions, the theory flows directly to a quantum critical point characterized by finite disorder and interactions. The critical exponents we obtain for this transition are in remarkable agreement with numerical studies of the superfluid-Mott glass transition. We additionally discuss the stability of this fixed point to scalar and vector potential disorder and use proposed boson-fermion dualities to make conjectures regarding the effects of weak disorder on dual Abelian Higgs and Chern-Simons-Dirac fermion theories when $N=1$.
199 - A. E. Niederle , H. Rieger 2015
Experimental realizations of disorder in optical lattices generate a distribution of the Bose-Hubbard (BH) parameters, like on-site potentials, hopping strengths, and interaction energies. We analyze this distribution for bosons in a bichromatic quasi-periodic potential by determining the generalized Wannier functions and calculating the corresponding BH parameters. Using a local mean-field cluster analysis, we study the effect of the corresponding disorder on the phase diagrams. We find a substantial amount of disorder in the hopping strengths, which produces strong deviations from the phase diagram of the disordered BH model with solely random on-site potentials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا