Multiplicity of positive solutions for a fractional Laplacian equations involving critical nonlinearity


Abstract in English

In this paper we deal with the multiplicity of positive solutions to the fractional Laplacian equation begin{equation*} (-Delta)^{frac{alpha}{2}} u=lambda f(x)|u|^{q-2}u+|u|^{2^{*}_{alpha}-2}u, quadtext{in},,Omega, u=0,text{on},,partialOmega, end{equation*} where $Omegasubset mathbb{R}^{N}(Ngeq 2)$ is a bounded domain with smooth boundary, $0<alpha<2$, $(-Delta)^{frac{alpha}{2}}$ stands for the fractional Laplacian operator, $fin C(Omegatimesmathbb{R},mathbb{R})$ may be sign changing and $lambda$ is a positive parameter. We will prove that there exists $lambda_{*}>0$ such that the problem has at least two positive solutions for each $lambdain (0,,,lambda_{*})$. In addition, the concentration behavior of the solutions are investigated.

Download