The main results of this paper are: (1) If a space $X$ can be embedded as a cellular subspace of $mathbb{R}^n$ then $X$ admits arbitrary fine open coverings whose nerves are homeomorphic to the $n$-dimensional cube $mathbb{D}^n$; (2) Every $n$-dimensional cell-like compactum can be embedded into $(2n+1)$-dimensional Euclidean space as a cellular subset; and (3) There exists a locally compact planar set which is acyclic with respect to v{C}ech homology and whose fine coverings are all nonacyclic.