Do you want to publish a course? Click here

Interactive 3D Face Stylization Using Sculptural Abstraction

146   0   0.0 ( 0 )
 Added by Jan Jachnik
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Sculptors often deviate from geometric accuracy in order to enhance the appearance of their sculpture. These subtle stylizations may emphasize anatomy, draw the viewers focus to characteristic features of the subject, or symbolize textures that might not be accurately reproduced in a particular sculptural medium, while still retaining fidelity to the unique proportions of an individual. In this work we demonstrate an interactive system for enhancing face geometry using a class of stylizations based on visual decomposition into abstract semantic regions, which we call sculptural abstraction. We propose an interactive two-scale optimization framework for stylization based on sculptural abstraction, allowing real-time adjustment of both global and local parameters. We demonstrate this systems effectiveness in enhancing physical 3D prints of scans from various sources.



rate research

Read More

In this paper, we present a learning-based method to the keyframe-based video stylization that allows an artist to propagate the style from a few selected keyframes to the rest of the sequence. Its key advantage is that the resulting stylization is semantically meaningful, i.e., specific parts of moving objects are stylized according to the artists intention. In contrast to previous style transfer techniques, our approach does not require any lengthy pre-training process nor a large training dataset. We demonstrate how to train an appearance translation network from scratch using only a few stylized exemplars while implicitly preserving temporal consistency. This leads to a video stylization framework that supports real-time inference, parallel processing, and random access to an arbitrary output frame. It can also merge the content from multiple keyframes without the need to perform an explicit blending operation. We demonstrate its practical utility in various interactive scenarios, where the user paints over a selected keyframe and sees her style transferred to an existing recorded sequence or a live video stream.
We present a system to convert any set of images (e.g., a video clip or a photo album) into a storyboard. We aim to create multiple pleasing graphic representations of the content at interactive rates, so the user can explore and find the storyboard (images, layout, and stylization) that best suits their needs and taste. The main challenges of this work are: selecting the content images, placing them into panels, and applying a stylization. For the latter, we propose an interactive design tool to create new stylizations using a wide range of filter blocks. This approach unleashes the creativity by allowing the user to tune, modify, and intuitively design new sequences of filters. In parallel to this manual design, we propose a novel procedural approach that automatically assembles sequences of filters for innovative results. We aim to keep the algorithm complexity as low as possible such that it can run interactively on a mobile device. Our results include examples of styles designed using both our interactive and procedural tools, as well as their final composition into interesting and appealing storyboards.
We present a 3D stylization algorithm that can turn an input shape into the style of a cube while maintaining the content of the original shape. The key insight is that cubic style sculptures can be captured by the as-rigid-as-possible energy with an l1-regularization on rotated surface normals. Minimizing this energy naturally leads to a detail-preserving, cubic geometry. Our optimization can be solved efficiently without any mesh surgery. Our method serves as a non-realistic modeling tool where one can incorporate many artistic controls to create stylized geometries.
Spectral geometric methods have brought revolutionary changes to the field of geometry processing -- however, when the data to be processed exhibits severe partiality, such methods fail to generalize. As a result, there exists a big performance gap between methods dealing with complete shapes, and methods that address missing geometry. In this paper, we propose a possible way to fill this gap. We introduce the first method to compute compositions of non-rigidly deforming shapes, without requiring to solve first for a dense correspondence between the given partial shapes. We do so by operating in a purely spectral domain, where we define a union operation between short sequences of eigenvalues. Working with eigenvalues allows to deal with unknown correspondence, different sampling, and different discretization (point clouds and meshes alike), making this operation especially robust and general. Our approach is data-driven, and can generalize to isometric and non-isometric deformations of the surface, as long as these stay within the same semantic class (e.g., human bodies), as well as to partiality artifacts not seen at training time.
Mesh reconstruction from a 3D point cloud is an important topic in the fields of computer graphic, computer vision, and multimedia analysis. In this paper, we propose a voxel structure-based mesh reconstruction framework. It provides the intrinsic metric to improve the accuracy of local region detection. Based on the detected local regions, an initial reconstructed mesh can be obtained. With the mesh optimization in our framework, the initial reconstructed mesh is optimized into an isotropic one with the important geometric features such as external and internal edges. The experimental results indicate that our framework shows great advantages over peer ones in terms of mesh quality, geometric feature keeping, and processing speed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا