Do you want to publish a course? Click here

New methodology to determine the terminal height of a fireball

132   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Despite ablation and drag processes associated with atmospheric entry of meteoroids were a subject of intensive study over the last century, little attention was devoted to interpret the observed fireball terminal height. This is a key parameter because it not only depends on the initial mass, but also on the bulk physical properties of the meteoroids and hence of their ability to ablate in the atmosphere. In this work we have developed a new approach that is tested using the fireball terminal heights observed by the Meteorite Observation and Recovery Project operated in Canada between 1970-1985 (hereafter referred as MORP). We then compare them to the calculation made. Our results clearly show that the new methodology is able to forecast the degree of deepening of meteoroids in the Earths atmosphere. Then, this approach has important applications in predicting the impact hazard from cm- to meter-sized bodies that are represented, in part, in the MORP bolide list.



rate research

Read More

Airless planetary bodies are covered by a dusty layer called regolith. The grain size of the regolith determines the temperature and the mechanical strength of the surface layers. Thus, knowledge of the grain size of planetary regolith helps to prepare future landing and/or sample-return missions. In this work, we present a method to determine the grain size of planetary regolith by using remote measurements of the thermal inertia. We found that small bodies in the Solar System (diameter less than ~100 km) are covered by relatively coarse regolith grains with typical particle sizes in the millimeter to centimeter regime, whereas large objects possess very fine regolith with grain sizes between 10 and 100 micrometer.
Objects gravitationally captured by the Earth-Moon system are commonly called temporarily captured orbiters (TCOs), natural Earth satellites, or minimoons. TCOs are a crucially important subpopulation of near-Earth objects (NEOs) to understand because they are the easiest targets for future sample-return, redirection, or asteroid mining missions. Only one TCO has ever been observed telescopically, 2006 RH 120, and it orbited Earth for about 11 months. Additionally, only one TCO fireball has ever been observed prior to this study. We present our observations of an extremely slow fireball (codename DN160822_03) with an initial velocity of around 11.0 km s-1 that was detected by six of the high-resolution digital fireball observatories located in the South Australian region of the Desert Fireball Network. Due to the inherent dynamics of the system, the probability of the meteoroid being temporarily captured before impact is extremely sensitive to its initial velocity. We examine the sensitivity of the fireballs orbital history to the chosen triangulation method. We use the numerical integrator REBOUND to assess particle histories and assess the statistical origin of DN160822_03. From our integrations we have found that the most probable capture time, velocity, semimajor axis, NEO group, and capture mechanism vary annually for this event. Most particles show that there is an increased capture probability during Earths aphelion and perihelion. In the future, events like these may be detected ahead of time using telescopes like the Large Synoptic Survey Telescope, and the pre-atmospheric trajectory can be verified.
The worlds meteorite collections contain a very rich picture of what the early Solar System would have been made of, however the lack of spatial context with respect to their parent population for these samples is an issue. The asteroid population is equally as rich in surface mineralogies, and mapping these two populations (meteorites and asteroids) together is a major challenge for planetary science. Directly probing asteroids achieves this at a high cost. Observing meteorite falls and calculating their pre-atmospheric orbit on the other hand, is a cheaper way to approach the problem. The Global Fireball Observatory (GFO) collaboration was established in 2017 and brings together multiple institutions (from Australia, USA, Canada, Morocco, Saudi Arabia, the UK, and Argentina) to maximise the area for fireball observation time and therefore meteorite recoveries. The members have a choice to operate independently, but they can also choose to work in a fully collaborative manner with other GFO partners. This efficient approach leverages the experience gained from the Desert Fireball Network (DFN) pathfinder project in Australia. The state-of-the art technology (DFN camera systems and data reduction) and experience of the support teams is shared between all partners, freeing up time for science investigations and meteorite searching. With all networks combined together, the GFO collaboration already covers 0.6% of the Earths surface for meteorite recovery as of mid-2019, and aims to reach 2% in the early 2020s. We estimate that after 5 years of operation, the GFO will have observed a fireball from virtually every meteorite type. This combined effort will bring new, fresh, extra-terrestrial material to the labs, yielding new insights about the formation of the Solar System.
Meteorites with known orbital origins are key to our understanding of Solar System formation and the source of life on Earth. However, these pristine samples of space material are incredibly rare. Less than 40 of the 60,000 meteorites held in collections around the world have known dynamical origins. Fireball networks have been developed globally in a unified effort to increase this number by using multiple observatories to record, triangulate, and dynamically analyse ablating meteoroids as they enter our atmosphere. The accuracy of the chosen meteoroid triangulation method directly influences the accuracy of the determined orbit and the likelihood of possible meteorite recovery. There are three leading techniques for meteoroid triangulation discussed in the literature: the Method of Planes, the Straight Line Least Squares method, and the Multi-Parameter Fit method. Here we describe an alternative method to meteoroid triangulation, called the Dynamic Trajectory Fit. This approach uses the meteoroids 3D dynamic equations of motion to fit a realistic trajectory directly to multi-sensor line-of-sight observations. This method has the ability to resolve fragmentation events, fit systematic observatory timing offsets, and determine mass estimates of the meteoroid along its observable trajectory. Through a comprehensive Monte-Carlo analysis of over 100,000 trajectory simulations, we find this new method to more accurately estimate meteoroid trajectories of slow entry events ($<$25,km/s) and events observed from low convergence angles ($<$10$^{circ}$) compared to existing meteoroid triangulation techniques. Additionally, we triangulate an observed fireball event with visible fragmentation using the various triangulation methods to show that the proposed Dynamic Trajectory Fit implementing fragmentation to best match the captured multi-sensor line-of-sight data.
The first opportunity to detect indications for life outside the Solar System may be provided already within the next decade with upcoming missions such as the James Webb Space Telescope (JWST), the European Extremely Large Telescope (E-ELT) and/or the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) mission, searching for atmospheric biosignatures on planets in the habitable zone of cool K- and M-stars. Nevertheless, their harsh stellar radiation and particle environment could lead to photochemical loss of atmospheric biosignatures. We aim to study the influence of cosmic rays on exoplanetary atmospheric biosignatures and the radiation environment considering feedbacks between energetic particle precipitation, climate, atmospheric ionization, neutral and ion chemistry, and secondary particle generation. We describe newly-combined state-of-the-art modeling tools to study the impact of the radiation and particle environment on atmospheric particle interaction, the influence on the atmospheric chemistry, and the climate-chemistry coupling in a self-consistent model suite. To this end, models like the Atmospheric Radiation Interaction Simulator (AtRIS), the Exoplanetary Terrestrial Ion Chemistry model (ExoTIC), and the updated coupled climate-chemistry model are combined. Amongst others, we model the atmospheric response during quiescent solar periods and during a strong solar energetic particle event as well as the scenario-dependent terrestrial transit spectra, as seen by the NIR-Spec infrared spectrometer onboard the JWST. We find that the comparatively weak solar event drastically increases the spectral signal of HNO$_3$, while significantly suppressing the spectral feature of ozone. Because of the slow recovery after such events, the latter indicates that ozone might not be a good biomarker for planets orbiting stars with high flaring rates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا