Momentum spectra of hydrogen isotopes have been measured at 3.5 deg from C12 fragmentation on a Be target. Momentum spectra cover both the region of fragmentation maximum and the cumulative region. Differential cross sections span five orders of magnitude. The data are compared to predictions of four Monte Carlo codes: QMD, LAQGSM, BC, and INCL++. There are large differences between the data and predictions of some models in the high momentum region. The INCL++ code gives the best and almost perfect description of the data.
The formation of the projectile spectator and the fragmentation processes in 107,124Sn + 120Sn collisions at 600 MeV/nucleon are studied with the isospin-dependent quantum molecular dynamics (IQMD) model. The minimum spanning tree algorithm and the ratio of parallel to transverse kinetic quantities are applied to identify the equilibrated projectile spectator during the dynamical evolution. The influence of secondary decay on fragmentation observables is investigated by performing calculations with and without the statistical code GEMINI. The validity of the theoretical approach is examined by comparing the calculated product yields and correlations with the experimental results of the ALADIN Collaboration for the studied reactions.
We measured fragmentation cross sections produced using the primary beam of $^{86}$Kr at 64 MeV/nucleon on $^9$Be and $^{181}$Ta targets. The cross sections were obtained by integrating the momentum distributions of isotopes with 25<Z<36 measured using the RIPS fragment separator at RIKEN. The cross-section ratios obtained with the $^{181}$Ta and $^{9}$Be targets depend on the fragment masses, contrary to the simple geometrical models. We compared the extracted cross sections to EPAX; an empirical parameterization of fragmentation cross sections. Predictions from current EPAX parameterization severely overestimate the production cross sections of very neutron-rich isotopes. Attempts to obtain another set of EPAX parameters specific to the reaction studied here, to extrapolate the neutron-rich nuclei more accurately have not been very successful, suggesting that accurate predictions of production cross sections of nuclei far from the valley of stability require information of nuclear properties which are not present in EPAX.
During therapeutic treatments using ions such as carbon, nuclear interactions between the incident ions and nuclei present in organic tissues may occur, leading to the attenuation of the incident beam intensity and to the production of secondary light charged particles. As the biological dose deposited in the tumor and the surrounding healthy tissues depends on the beam composition, an accurate knowledge of the fragmentation processes is thus essential. In particular, the nuclear interaction models have to be validated using experimental double differential cross sections which are still very scarce. An experiment was realized in 2011 at GANIL to obtain these cross sections for a 95 MeV/nucleon carbon beam on different thin targets for angles raging from 4 to 43{deg} . In order to complete these data, a new experiment was performed on September 2013 at GANIL to measure the fragmentation cross section at zero degree for a 95 MeV/nucleon carbon beam on thin targets. In this work, the experimental setup will be described, the analysis method detailed and the results presented.
A study of the reaction pi+ + d --> p + p has been performed in the energy range of 18 - 44 MeV. Total cross sections and differential cross sections at six angles have been measured at 15 energies with an energy increment of 1 - 2 MeV. This is the most systematic data set in this energy range. No structure in the energy dependence of the cross section has been observed within the accuracy of this experiment.
Recent measurements of charm-baryon production at midrapidity by the ALICE collaboration show baryon-to-meson yield ratios significantly higher than those measured in $rm e^+e^-$ collisions, suggesting that the charm fragmentations are not universal across different collisions systems. Thus, measurements of charm-baryon production are crucial to study the charm quark hadronisation in proton--proton (pp) collisions. In proton--lead (p--Pb) collisions, the measurements of charm baryons provide important information about cold nuclear matter effects and help to understand how the possible presence of collective effects could modify the production of heavy-flavour hadrons. In this contribution, the most recent results on open charm-hadron production in pp and p--Pb collisions measured by ALICE are discussed.
B. M. Abramov
,P. N. Alexeev
,Yu. A. Borodin
.
(2015)
.
"Verification of Monte Carlo transport codes against measured small angle p-, d-, and t-emission in carbon fragmentation at 600 MeV/nucleon"
.
Stepan G. Mashnik
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا