Disordered Fe vacancies and superconductivity in potassium-intercalated iron selenide (K2-xFe4+ySe5)


Abstract in English

The parent compound of an unconventional superconductor must contain unusual correlated electronic and magnetic properties of its own. In the high-Tc potassium intercalated FeSe, there has been significant debate regarding what the exact parent compound is. Our studies unambiguously show that the Fe-vacancy ordered K2Fe4Se5 is the magnetic, Mott insulating parent compound of the superconducting state. Non-superconducting K2Fe4Se5 becomes a superconductor after high temperature annealing, and the overall picture indicates that superconductivity in K2-xFe4+ySe5 originates from the Fe-vacancy order to disorder transition. Thus, the long pending question whether magnetic and superconducting state are competing or cooperating for cuprate superconductors may also apply to the Fe-chalcogenide superconductors. It is believed that the iron selenides and related compounds will provide essential information to understand the origin of superconductivity in the iron-based superconductors, and possibly to the superconducting cuprates.

Download