Wide area X-ray and far infrared surveys are a fundamental tool to investigate the link between AGN growth and star formation, especially in the low-redshift universe (z<1). The Herschel Terahertz Large Area survey (H-ATLAS) has covered 550 deg^2 in five far-infrared and sub-mm bands, 16 deg^2 of which have been presented in the Science Demonstration Phase (SDP) catalogue. Here we introduce the XMM-Newton observations in H-ATLAS SDP area, covering 7.1 deg^2 with flux limits of 2e-15, 6e-15 and 9e-15 erg/s/cm^2 in the 0.5--2, 0.5--8 and 2--8 keV bands, respectively. We present the source detection and the catalogue, which includes 1700, 1582 and 814 sources detected by Emldetect in the 0.5--8, 0.5--2 and 2--8 keV bands, respectively; the number of unique sources is 1816. We extract spectra and derive fluxes from power-law fits for 398 sources with more than 40 counts in the 0.5--8 keV band. We compare the best-fit fluxes with the catalogue ones, obtained by assuming a common photon index of Gamma=1.7; we find no bulk difference between the fluxes, and a moderate dispersion of s=0.33 dex. Using wherever possible the fluxes from the spectral fits, we derive the 2--10 keV LogN-LogS, which is consistent with a Euclidean distribution. Finally, we release computer code for the tools developed for this project.