The extended HeII4686-emitting region in IZw18 unveiled: clues for peculiar ionizing sources


Abstract in English

New integral field spectroscopy has been obtained for IZw18, the nearby lowest-metallicity galaxy considered our best local analog of systems forming at high-z. Here we report the spatially resolved spectral map of the nebular HeII4686 emission in IZw18, from which we derived for the first time its total HeII-ionizing flux. Nebular HeII emission implies the existence of a hard radiation field. HeII-emitters are observed to be more frequent among high-z galaxies than for local objects. So investigating the HeII-ionizing source(s) in IZw18 may reveal the ionization processes at high-z. HeII emission in star-forming galaxies, has been suggested to be mainly associated with Wolf-Rayet stars (WRs), but WRs cannot satisfactorily explain the HeII-ionization at all times, in particular at lowest metallicities. Shocks from supernova remnants, or X-ray binaries, have been proposed as additional potential sources of HeII-ionizing photons. Our data indicate that conventional HeII-ionizing sources (WRs, shocks, X-ray binaries) are not sufficient to explain the observed nebular HeII4686 emission in IZw18. We find that the HeII-ionizing radiation expected from models for either low-metallicity super-massive O stars or rotating metal-free stars could account for the HeII-ionization budget measured, while only the latter models could explain the highest values of HeII4686/Hbeta observed. The presence of such peculiar stars in IZw18 is suggestive and further investigation in this regard is needed. This letter highlights that some of the clues of the early Universe can be found here in our cosmic backyard.

Download