We consider the many-body localization-delocalization transition for strongly interacting one- dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator-fluid transitions at any finite temperature when varying the interaction strength. At weak interactions an increase in the interaction strength leads to insulator->fluid transition, and for large interactions one has a reentrance to the insulator regime.
It is commonly accepted that there are no phase transitions in one-dimensional (1D) systems at a finite temperature, because long-range correlations are destroyed by thermal fluctuations. Here we demonstrate that the 1D gas of short-range interacting bosons in the presence of disorder can undergo a finite temperature phase transition between two distinct states: fluid and insulator. None of these states has long-range spatial correlations, but this is a true albeit non-conventional phase transition because transport properties are singular at the transition point. In the fluid phase the mass transport is possible, whereas in the insulator phase it is completely blocked even at finite temperatures. We thus reveal how the interaction between disordered bosons influences their Anderson localization. This key question, first raised for electrons in solids, is now crucial for the studies of atomic bosons where recent experiments have demonstrated Anderson localization in expanding very dilute quasi-1D clouds.
We study phase transitions in a two dimensional weakly interacting Bose gas in a random potential at finite temperatures. We identify superfluid, normal fluid, and insulator phases and construct the phase diagram. At T=0 one has a tricritical point where the three phases coexist. The truncation of the energy distribution at the trap barrier, which is a generic phenomenon in cold atom systems, limits the growth of the localization length and in contrast to the thermodynamic limit the insulator phase is present at any temperature.
Many-body localization is a fascinating theoretical concept describing the intricate interplay of quantum interference, i.e. localization, with many-body interaction induced dephasing. Numerous computational tests and also several experiments have been put forward to support the basic concept. Typically, averages of time-dependent global observables have been considered, such as the charge imbalance. We here investigate within the disordered spin-less Hubbard ($t-V$) model how dephasing manifests in time dependent variances of observables. We find that after quenching a Neel state the local charge density exhibits strong temporal fluctuations with a damping that is sensitive to disorder $W$: variances decay in a power law manner, $t^{-zeta}$, with an exponent $zeta(W)$ strongly varying with $W$. A heuristic argument suggests the form, $zetaapproxalpha(W)xi_text{sp}$, where $xi_text{sp}(W)$ denotes the noninteracting localization length and $alpha(W)$ characterizes the multifractal structure of the dynamically active volume fraction of the many-body Hilbert space. In order to elucidate correlations underlying the damping mechanism, exact computations are compared with results from the time-dependent Hartree-Fock approximation. Implications for experimentally relevant observables, such as the imbalance, will be discussed.
We consider weakly interacting bosons in a 1D quasiperiodic potential (Aubry-Azbel-Harper model) in the regime where all single-particle states are localized. We show that the interparticle interaction may lead to the many-body delocalization and we obtain the finite-temperature phase diagram. Counterintuitively, in a wide range of parameters the delocalization requires stronger cou- pling as the temperature increases. This means that the system of bosons can undergo a transition from a fluid to insulator (glass) state under heating.
Building on the recent experimental achievements obtained with scanning electron microscopy on ultracold atoms, we study one-dimensional Bose gases in the crossover between the weakly (quasi-condensate) and the strongly interacting (Tonks-Girardeau) regime. We measure the temporal two-particle correlation function and compare it with calculations performed using the Time Evolving Block Decimation algorithm. More pronounced antibunching is observed when entering the more strongly interacting regime. Even though this mimics the onset of a fermionic behavior, we highlight that the exact and simple duality between 1D bosons and fermions does not hold when such dynamical response is probed. The onset of fermionization is also reflected in the density distribution, which we measure emph{in situ} to extract the relevant parameters and to identify the different regimes. Our results show agreement between experiment and theory and give new insight into the dynamics of strongly correlated many-body systems.