Do you want to publish a course? Click here

Counting ghosts in the ghost-free non-local gravity

91   0   0.0 ( 0 )
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In the recently proposed non-local theory of quantum gravity one can avoid massive tensor ghosts at the tree level by a special choice of the non-local form factor between the two Ricci tensors. We show that at the quantum level this theory has an infinite amount of massive unphysical states, mostly corresponding to complex poles.



rate research

Read More

253 - Siqing Yu 2013
We present a classical analysis on the issue of vector superluminality in the decoupling limit ghost-free massive gravity with a Minkowski reference metric. We show explicitly in the Lorenz gauge that the theory is free of superluminal vector excitations around a nontrivial solution at the cubic order in the fields. In the same gauge, we demonstrate that superluminal vector modes arise at the quartic order and compute some superluminal propagating solutions. We then generalize our findings to all orders in a gauge-independent way. We check the physical consistency of the vector superluminalities, arguing that they are not physically detectable in the perturbation theory but could be trusted classically in the strong coupling region. Nevertheless, these superluminalities involve only low frequency group and phase velocities and are unable to determine the acausality of the theory.
516 - Kouichi Nomura , Jiro Soda 2012
We study ghosts in multimetric gravity by combining the mini-superspace and the Hamiltonian constraint analysis. We first revisit bimetric gravity and explain why it is ghost-free. Then, we apply our method to trimetric gravity and clarify when the model contains a ghost. More precisely, we prove trimetric gravity generically contains a ghost. However, if we cut the interaction of a pair of metrics, trimetric gravity becomes ghost-free. We further extend the Hamiltonian analysis to general multimetric gravity and calculate the number of ghosts in various models. Thus, we find multimetric gravity with loop type interactions never becomes ghost-free.
We discuss aspects of non-perturbative unitarity in quantum field theory. The additional ghost degrees of freedom arising in truncations of an effective action at a finite order in derivatives could be fictitious degrees of freedom. Their contributions to the fully-dressed propagator -- the residues of the corresponding ghost-like poles -- vanish once all operators compatible with the symmetry of the theory are included in the effective action. These fake ghosts do not indicate a violation of unitarity.
It is possible to couple Dirac-Born-Infeld (DBI) scalars possessing generalized Galilean internal shift symmetries (Galileons) to nonlinear massive gravity in four dimensions, in such a manner that the interactions maintain the Galilean symmetry. Such a construction is of interest because it is not possible to couple such fields to massless General Relativity in the same way. We show that this theory has the primary constraint necessary to eliminate the Boulware-Deser ghost, thus preserving the attractive properties of both the Galileons and ghost-free massive gravity.
We consider the branch of the projectable Horava-Lifshitz model which exhibits ghost instabilities in the low energy limit. It turns out that, due to the Lorentz violating structure of the model and to the presence of a finite strong coupling scale, the vacuum decay rate into photons is tiny in a wide range of phenomenologically acceptable parameters. The strong coupling scale, understood as a cutoff on ghosts spatial momenta, can be raised up to $Lambda sim 10$ TeV. At lower momenta, the projectable Horava-Lifshitz gravity is equivalent to General Relativity supplemented by a fluid with a small positive sound speed squared ($10^{-42}lesssim$) $c^2_s lesssim 10^{-20}$, that could be a promising candidate for the Dark Matter. Despite these advantages, the unavoidable presence of the strong coupling obscures the implementation of the original Horavas proposal on quantum gravity. Apart from the Horava-Lifshitz model, conclusions of the present work hold also for the mimetic matter scenario, where the analogue of the projectability condition is achieved by a non-invertible conformal transformation of the metric.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا