In this work, we study the quantum entanglement for doubly excited resonance states in helium by using highly correlated Hylleraas type functions to represent such states of the two-electron system. The doubly-excited resonance states are determined by calculation of density of resonance states under the framework of the stabilization method. The spatial (electron-electron orbital) entanglement measures for the low-lying doubly excited 2s2, 2s3s, and 2p2 1Se states are carried out. Once a resonance state wave function is obtained, the linear entropy and von Neumann entropy for such a state are quantified using the Schmidt-Slater decomposition method. To check the consistence, linear entropy is also determined by solving analytically the needed four-electron (12-dimensional) integrals.