No Arabic abstract
Context: The north-west photo-dissociation region (PDR) in the reflection nebula NGC 7023 displays a complex structure. Filament-like condensations at the edge of the cloud can be traced via the emission of the main cooling lines, offering a great opportunity to study the link between the morphology and energetics of these regions. Aims: We study the spatial variation of the far-infrared fine-structure lines of [C II] (158 um) and [O I] (63 and 145 um). These lines trace the local gas conditions across the PDR. Methods: We used observations from the Herschel/PACS instrument to map the spatial distribution of these fine-structure lines. The observed region covers a square area of about 110 x 110 with an angular resolution that varies from 4 to 11. We compared this emission with ground-based and Spitzer observations of H2 lines, Herschel/SPIRE observations of CO lines, and Spitzer/IRAC 3.6 um images that trace the emission of polycyclic aromatic hydrocarbons. Results: The [C II] (158 um) and [O I] (63 and 145 um) lines arise from the warm cloud surface where the PDR is located and the gas is warm, cooling the region. We find that although the relative contribution to the cooling budget over the observed region is dominated by [O I]63 um (>30%), H2 contributes significantly in the PDR (35%), as does [C II]158 um outside the PDR (30%). Other species contribute little to the cooling ([O I]145 um 9%, and CO 4%). The [O I] maps resolve these condensations into two structures and show that the peak of [O I] is slightly displaced from the molecular H2 emission. The size of these structures is about 8 (0.015 pc) and in surface cover about 9% of the PDR emission. Finally, we did not detect emission from [N II]122 um, suggesting that the cavity is mostly filled with non-ionised gas.
We present spatially resolved Herschel/PACS observations of the Orion Bar. We have characterise the emission of the far-infrared fine-structure lines of [CII] (158um), [OI] (63 and 145um), and [NII] (122um) that trace the gas local conditions. The observed distribution and variation of the lines are discussed in relation to the underlying geometry and linked to the energetics associated with the Trapezium stars. These observations enable us to map the spatial distribution of these fine-structure lines with a spatial resolution between 4 and 11 and covering a total square area of about 120x105. The spatial profile of the emission lines are modelled using the radiative transfer code Cloudy. We find that the spatial distribution of the [CII] line coincides with that of the [OI] lines. The [NII] line peaks closer to the ionising star than the other three lines, but with a small region of overlap. We can distinguish several knots of enhanced emission within the Bar indicating the presence of an inhomogenous and structured medium. The emission profiles cannot be reproduced by a single photo-dissociation region, clearly indicating that, besides the Bar, there is a significant contribution from additional photo-dissociation region(s) over the area studied. The combination of both the [NII] and [OI] 145um lines can be used to estimate the [CII] emission and distinguish between its ionised or neutral origin. We have calculated how much [CII] emission comes from the neutral and ionised region, and find that at least 82% originates from the photo-dissocciation region. Together, the [CII] 158um and [OI] 63 and 145um lines account for 90% of the power emitted by the main cooling lines in the Bar (including CO, H2, etc...), with [OI] 63um alone accounting for 72% of the total.
We present 5-20 micron spectral maps of the reflection nebula NGC2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C60, and H2 superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions revealing a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7 and 8.6 micron PAH bands and find that at least two spatially distinct components contribute to the 7--9 micron PAH emission in NGC2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact oval PAHs ranging in size from C_66 to C_210, determined computationally using density functional theory, and investigate trends in the band positions and relative intensities as a function of PAH size, charge and geometry. Based on the NASA Ames PAH database, we discuss the 7--9 micron components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7--9 micron emission that likely originates in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as they are more and more exposed to the radiation field of the central star in the evaporative flows associated with the PDRs in NGC2023.
We have mapped the NGC 2023 reflection nebula in [CII] and CO(11--10) with the heterodyne receiver GREAT on SOFIA and obtained slightly smaller maps in 13CO(3--2), CO(3--2), CO(4--3), CO(6--5), and CO(7--6) with APEX in Chile. We use these data to probe the morphology, kinematics, and physical conditions of the C II region, which is ionized by FUV radiation from the B2 star HD37903. The [CII] emission traces an ellipsoidal shell-like region at a position angle of ~ -50 deg, and is surrounded by a hot molecular shell. In the southeast, where the C II region expands into a dense, clumpy molecular cloud ridge, we see narrow and strong line emission from high-J CO lines, which comes from a thin, hot molecular shell surrounding the [CII] emission. The [CII] lines are broader and show photo evaporating gas flowing into the C II region. Based on the strength of the [13CII] F=2--1 line, the [CII] line appears to be somewhat optically thick over most of the nebula with an optical depth of a few. We model the physical conditions of the surrounding molecular cloud and the PDR emission using both RADEX and simple PDR models. The temperature of the CO emitting PDR shell is ~ 90 -- 120 K, with densities of 10^5 -- 10^6 cm^-3, as deduced from RADEX modeling. Our PDR modeling indicates that the PDR layer where [CII] emission dominates has somewhat lower densities, 10^4 to a few times 10^5 cm^-3
We present 15-20 um spectral maps towards the reflection nebula NGC2023 obtained with the Infrared Spectrograph in short-wavelength, high-resolution mode on board the Spitzer Space Telescope. These spectra reveal emission from PAHs, C60, and H2 superposed on a dust continuum. These emission components exhibit distinct spatial distributions: with increasing distance from the illuminating star, we observe the PAH emission followed by the dust continuum emission and the H2 emission. The C60 emission is located closest to the illuminating star in the south while in the north, it seems to be associated with the H/H2 transition. Emission from PAHs and PAH-related species produce features at 15.8, 16.4, 17.4, and 17.8 um and the 15-18 um plateau. These different PAH features show distinct spatial distributions. The 15.8 um band and 15-18 um plateau correlate with the 11.2 um PAH band and with each other, and are attributed to large, neutral PAHs. Conversely, the 16.4 um feature correlates with the 12.7 um PAH band, suggesting that both arise from species that are favored by the same conditions that favor PAH cations. The PAH contribution to the 17.4 um band is displaced towards the illuminating star with respect to the 11.2 and 12.7 um emission and is assigned to doubly ionized PAHs and/or a subset of cationic PAHs. The spatial distribution of the 17.8 um band suggests it arises from both neutral and cationic PAHs. In contrast to their intensities, the profiles of the PAH bands and the 15-18 um plateau do not vary spatially. Consequently, we conclude that the carrier of the 15-18 um plateau is distinct from that of the PAH bands.
The ratio of the [CII] 158$,mu$m emission line over the total infrared emission (TIR) is often used as a proxy for the photoelectric (PE) heating efficiency ($epsilon_{rm PE}$) of the far-ultraviolet (FUV) photons absorbed by dust in the interstellar medium. In the nearby galaxy M31, we measure a strong radial variation of [CII]/TIR that we rule out as being due to an intrinsic variation in $epsilon_{rm PE}$. [CII]/TIR fails as a proxy for $epsilon_{rm PE}$, because the TIR measures all dust heating, not just the contribution from FUV photons capable of ejecting electrons from dust grains. Using extensive multiwavelength coverage from the FUV to far-infrared (FIR), we infer the attenuated FUV emission ($rm UV_{att}$), and the total attenuated flux ($rm TOT_{att}$). We find [CII]/TIR to be strongly correlated with $rm UV_{att}$/$rm TOT_{att}$, indicating that, in M31 at least, one of the dominant drivers for [CII]/TIR variation is the relative hardness of the absorbed stellar radiation field. We define $rm{ epsilon_{PE}^{UV}}$, [CII]/$rm{ UV_{att}}$ which should be more closely related to the actual PE efficiency, which we find to be essentially constant ($1.85 pm 0.8 %$) in all explored fields in M31. This suggests that part of the observed variation of [CII]/TIR in other galaxies is likely due to a change in the relative hardness of the absorbed stellar radiation field, caused by a combination of variations in the stellar population, dust opacity and galaxy metallicity, although PE efficiency may also vary across a wider range of environments.