No Arabic abstract
Transverse momentum spectra of protons and anti-protons from RHIC ($sqrt{s}$ = 62 and 200 GeV) and LHC experiments ($sqrt{s}$= 0.9 and 7 TeV) have been considered. The data are fitted in the low $p_T$ region with the universal formula that includes the value of exponent slope as a main parameter. It is seen that the slope of low-$p_T$ distributions is changing with energy. This effect impacts on the energy dependence of average transverse momenta, which behaves approximately as $s^{0.06}$ that is similar to the previously observed behavior for $Lambda^0$-baryon spectra. In addition, the available data on $Lambda_c$ production from LHCb at $sqrt{s}= 7$ TeV were also studied. The estimated average $<p_T>$ is bigger than this value for protons proportionally to masses. The preliminary dependence of hadron average transverse momenta on their masses at LHC energy is presented.
In order to characterize the transverse momentum spectra of positive pions measured in the ALICE experiment, two thermal approaches are utilized; one is based on degeneracy of non-perfect Bose-Einstein gas and the other imposes an {it ad-hoc} finite pion-chemical potential. The inclusion of missing haron states and the out-of-chemical equilibrium greatly contribute to the excellent characterization of pion production. The excellent reproduction of the experimental data can be understood as a manifestation of not-yet-regarded anomalous pion-production, which likely contribute to the long-standing debate on the {it anomalous} proton-to-pion ratios at top RHIC and LHC energies.
The transverse momentum distributions of various hadrons produced in most central Pb+Pb collisions at LHC energy Root(s_NN) = 2.76 TeV have been studied using our earlier proposed unified statistical thermal freeze-out model. The calculated results are found to be in good agreement with the experimental data measured by the ALICE experiment. The model calculation fits provide the thermal freeze-out conditions in terms of the temperature and collective flow effect parameters for different particle species. Interestingly the model parameter fits reveal a strong collective flow in the system which appears to be a consequence of the increasing particle density at LHC. The model used incorporates a longitudinal as well as transverse hydrodynamic flow. The chemical potential has been assumed to be nearly equal to zero for the bulk of the matter owing to a high degree of nuclear transparency effect at such energies. The contributions from heavier decay resonances are also taken into account in our calculations.
An overview is presented of transverse momentum distributions of particles at the LHC using the Tsallis distribution. The use of a thermodynamically consistent form of this distribution leads to an excellent description of charged and identified particles. The values of the Tsallis parameter q are truly remarkably consistent.
It has long been debated whether the hydrodynamics is suitable for the smaller colliding systems such as p+p collisions. In this paper, by assuming the existence of longitudinal collective motion and long-range interactions in the hot and dense matter created in p+p collisions, the relativistic hydrodynamics incorporating with the nonextensive statistics is used to analyze the transverse momentum distributions of the particles. The investigations of present paper show that the hybrid model can give a good description of the currently available experimental data obtained in p+p collisions at RHIC and LHC energies, except for p and p^bar produced in the range of p_T> 3.0 GeV/c at sqrt(s)=200 GeV.
We investigate the predictive power of transverse-momentum-dependent (TMD) distributions as a function of the light-cone momentum fraction $x$ and the hard scale $Q$ defined by the process. We apply the saddle point approximation to the unpolarized quark and gluon transverse momentum distributions and evaluate the position of the saddle point as a function of the kinematics. We determine quantitatively that the predictive power for an unpolarized transverse momentum distribution is maximal in the large-$Q$ and small-$x$ region. For cross sections the predictive power of the TMD factorization formalism is generally enhanced by considering the convolution of two distributions, and we explicitly consider the case of $Z$ and $H^0$ boson production. In the kinematic regions where the predictive power is not maximal, the distributions are sensitive to the non-perturbative hadron structure. Thus, these regions are critical for investigating hadron tomography in a three-dimensional momentum space.