Do you want to publish a course? Click here

Minimizing magnetic fields for precision experiments

118   0   0.0 ( 0 )
 Added by Stefan Stuiber
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutrons electric dipole moment, our finding corresponds to a linear improvement in the systematic reach and a 40 % improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.



rate research

Read More

This work presents selected results from the first round of the DFG Priority Programme SPP 1491 precision experiments in particle and astroparticle physics with cold and ultra-cold neutrons.
The current generation of short baseline neutrino experiments is approaching intrinsic source limitations in the knowledge of flux, initial neutrino energy and flavor. A dedicated facility based on conventional accelerator techniques and existing infrastructures designed to overcome these impediments would have a remarkable impact on the entire field of neutrino oscillation physics. It would improve by about one order of magnitude the precision on $ u_mu$ and $ u_e$ cross sections, enable the study of electroweak nuclear physics at the GeV scale with unprecedented resolution and advance searches for physics beyond the three-neutrino paradigm. In turn, these results would enhance the physics reach of the next generation long baseline experiments (DUNE and Hyper-Kamiokande) on CP violation and their sensitivity to new physics. In this document, we present the physics case and technology challenge of high precision neutrino beams based on the results achieved by the ENUBET Collaboration in 2016-2018. We also set the R&D milestones to enable the construction and running of this new generation of experiments well before the start of the DUNE and Hyper-Kamiokande data taking. We discuss the implementation of this new facility at three different level of complexity: $ u_mu$ narrow band beams, $ u_e$ monitored beams and tagged neutrino beams. We also consider a site specific implementation based on the CERN-SPS proton driver providing a fully controlled neutrino source to the ProtoDUNE detectors at CERN.
We report on the design and performance of small optic suspensions developed to suppress seismic motion of out-of-cavity optics in the Input Optics subsystem of the Advanced LIGO interferometric gravitational wave detector. These compact single stage suspensions provide isolation in all six degrees of freedom of the optic, local sensing and actuation in three of them, and passive damping for the other three.
We present the design and construction of an NMR probe to investigate single crystals under strain at cryogenic temperatures. The probe head incorporates a piezoelectric-based apparatus from Razorbill Instruments that enables both compressive and tensile strain tuning up to strain values on the order of 0.3% with a precision of 0.001%. $^{75}$As NMR in BaFe$_2$As$_2$ reveals large changes to the electric field gradient, and indicates that the strain is homogeneous to within 16% over the volume of the NMR coil.
In this work we present data characterizing the sensitivity of the Bir{e}fringence Magnetique du Vide (BMV) instrument. BMV is an experiment attempting to measure vacuum magnetic birefringence (VMB) via the measurement of an ellipticity induced in a linearly polarized laser field propagating through a birefringent region of vacuum in the presence of an external magnetic field. Correlated measurements of laser noise alongside the measurement in the main detection channel allow us to separate measured sensing noise from the inherent birefringence noise of the apparatus. To this end we model different sources of sensing noise for cavity-enhanced polarimetry experiments, such as BMV. Our goal is to determine the main sources of noise, clarifying the limiting factors of such an apparatus. We find our noise models are compatible with the measured sensitivity of BMV. In this context we compare the phase sensitivity of separate-arm interferometers to that of a polarimetry apparatus for the discussion of current and future VMB measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا