Do you want to publish a course? Click here

MALT-45: A 7 mm survey of the southern Galaxy - I. Techniques and spectral line data

285   0   0.0 ( 0 )
 Added by Christopher Jordan
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first results from the MALT-45 (Millimetre Astronomers Legacy Team - 45 GHz) Galactic Plane survey. We have observed 5 square-degrees ($l = 330 - 335$, $b = pm0.5$) for spectral lines in the 7 mm band (42-44 and 48-49 GHz), including $text{CS}$ $(1-0)$, class I $text{CH}_3text{OH}$ masers in the $7(0,7)-6(1,6)$ $text{A}^{+}$ transition and $text{SiO}$ $(1-0)$ $v=0,1,2,3$. MALT-45 is the first unbiased, large-scale, sensitive spectral line survey in this frequency range. In this paper, we present data from the survey as well as a few intriguing results; rigorous analyses of these science cases are reserved for future publications. Across the survey region, we detected 77 class I $text{CH}_3text{OH}$ masers, of which 58 are new detections, along with many sites of thermal and maser $text{SiO}$ emission and thermal $text{CS}$. We found that 35 class I $text{CH}_3text{OH}$ masers were associated with the published locations of class II $text{CH}_3text{OH}$, $text{H}_2text{O}$ and $text{OH}$ masers but 42 have no known masers within 60 arcsec. We compared the MALT-45 $text{CS}$ with $text{NH}_3$ (1,1) to reveal regions of $text{CS}$ depletion and high opacity, as well as evolved star-forming regions with a high ratio of $text{CS}$ to $text{NH}_3$. All $text{SiO}$ masers are new detections, and appear to be associated with evolved stars from the $it{Spitzer}$ Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). Generally, within $text{SiO}$ regions of multiple vibrational modes, the intensity decreases as $v=1,2,3$, but there are a few exceptions where $v=2$ is stronger than $v=1$.



rate research

Read More

We detail interferometric observations of 44GHz class I methanol masers detected by MALT-45 (a 7mm unbiased auto-correlated spectral-line Galactic-plane survey) using the Australia Telescope Compact Array. We detect 238 maser spots across 77 maser sites. Using high-resolution positions, we compare the class I CH$_3$OH masers to other star formation maser species, including CS (1-0), SiO $v=0$ and the H53$alpha$ radio-recombination line. Comparison between the cross- and auto-correlated data has allowed us to also identify quasi-thermal emission in the 44GHz class I methanol maser line. We find that the majority of class I methanol masers have small spatial and velocity ranges ($<$0.5pc and $<$5 km s$^{-1}$), and closely trace the systemic velocities of associated clouds. Using 870$mu$m dust continuum emission from the ATLASGAL survey, we determine clump masses associated with class I masers, and find they are generally associated with clumps between 1000 and 3000 $M_odot$. For each class I methanol maser site, we use the presence of OH masers and radio recombination lines to identify relatively evolved regions of high-mass star formation; we find that maser sites without these associations have lower luminosities and preferentially appear toward dark infrared regions.
We introduce the MALT-45 (Millimetre Astronomers Legacy Team - 45 GHz) Galactic plane survey and describe pilot survey results with the Australia Telescope Compact Array (ATCA). The pilot survey was conducted to test the instrumentation and observational technique of MALT-45, before commencing the full survey. We mapped two half-square degree regions within the southern Galactic plane around the G333 giant molecular cloud, using fast mosaic mapping. Using the new Compact Array Broadband Backend (CABB) on the ATCA, we were able to observe two 2048 MHz spectral windows, centred on frequencies 43.2 and 48.2 GHz. Although only a coarse spectral resolution of around 7 km/s was available to us, we detect widespread, extended emission in the CS (1-0) ground state transition. We also detect eight Class I CH3OH masers at 44 GHz and three SiO masers in vibrationally excited (1-0) transitions. We also detect the H53a radio recombination line, non-vibrationally excited SiO (1-0) and emission in the CH3OH 1_1-0_0 A+ line.
We conduct spectral line survey observations in the 3 mm band toward a spiral arm, a bar-end, and a nuclear region of the nearby barred spiral galaxy NGC 3627 with the IRAM 30 m telescope and the Nobeyama 45 m telescope. Additional observations are performed toward the spiral arm and the bar-end in the 2 mm band. We detect 8, 11, and 9 molecular species in the spiral arm, the bar-end, and the nuclear region, respectively. Star-formation activities are different among the three regions, and in particular, the nucleus of NGC 3627 is known as a LINER/Seyfert 2 type nucleus. In spite of these physical differences, the chemical composition shows impressive similarities among the three regions. This result means that the characteristic chemical composition associated with these regions is insensitive to the local physical conditions such as star formation rate, because such local effects are smeared out by extended quiescent molecular gas on scales of 1 kpc. Moreover, the observed chemical compositions are also found to be similar to those of molecular clouds in our Galaxy and the spiral arm of M51, whose elemental abundances are close to those in NGC 3627. Therefore, this study provides us with a standard template of the chemical composition of extended molecular clouds with the solar metalicity in nearby galaxies.
489 - J. H. He , S. Takahashi , X. Chen 2012
A northern subsample of 89 Spitzer GLIMPSE extended green objects (EGOs), the candidate massive young stellar objects, are surveyed for molecular lines in two 1-GHz ranges: 251.5- 252.5 and 260.188-261.188 GHz. A comprehensive catalog of observed molecular line data and spectral plots are presented. Eight molecular species are undoubtedly detected: H13CO+, SiO, SO, CH3OH, CH3OCH3, CH3CH2CN, HCOOCH3, and HN13C. H13CO+ 3-2 line is detected in 70 EGOs among which 37 ones also show SiO 6-5 line, demonstrating their association to dense gas and supporting the outflow interpretation of the extended 4.5 um excess emission. Our major dense gas and outflow tracers (H13CO+, SiO, SO and CH3OH) are combined with our previous survey of 13CO, 12CO and C18O 1-0 toward the same sample of EGOs for a multi-line multi- cloud analysis of line width and luminosity correlations. Good log-linear correlations are found among all considered line luminosities, which requires a universal similarity of density and thermal structures and probably of shock properties among all EGO clouds to explain. It also requires that the shocks should be produced within the natal clouds of the EGOs. Diverse degrees of correlation are found among the line widths. However, both the line width and luminosity correlations tend to progressively worsen across larger cloud subcomponent size-scales, depicting the increase of randomness across cloud subcomponent sizes. Moreover, the line width correlations among the three isotopic CO 1-0 lines show data scatter as linear functions of the line width itself, indicating that the velocity randomness also increases with whole-cloud sizes and has some regularity behind.
86 - R. D. Baldi 2021
The origin of the radio emission in radio-quiet quasars (RQQs) remains unclear. Radio photons may be produced by a scaled-down version of the relativistic jets observed in radio-loud (RL) AGN, an AGN-driven wind, the accretion disc corona, AGN photon-ionisation of ambient gas (free-free emission), or star formation (SF). Here, we report a pilot study, part of a radio survey (`PG-RQS) aiming at exploring the spectral distributions of the 71 Palomar-Green (PG) RQQs: high angular resolution observations ($sim$50 mas) at 45~GHz (7 mm) with the Jansky Very Large Array of 15 sources. Sub-mJy radio cores are detected in 13 sources on a typical scale of $sim$100 pc, which excludes significant contribution from galaxy-scale SF. For 9 sources the 45-GHz luminosity, $ u L_{45~{rm GHz}}$, is above the lower frequency ($sim$1--10 GHz) spectral extrapolation, indicating the emergence of an additional flatter-spectrum compact component at high frequencies. The X-ray luminosity and black hole (BH) mass, correlate more tightly with the 45-GHz luminosity than the 5-GHz. The 45GHz-based radio-loudness increases with decreasing Eddington ratio and increasing BH mass. These results suggest that the 45-GHz emission from PG RQQs nuclei originates from the innermost region of the core, probably from the accretion disc corona. Increasing contributions to 45-GHz emission from a jet at higher BH masses and lower Eddington ratios and from a disc wind at large Eddington ratios are still consistent with our results. Future full radio spectral coverage of the sample will help us investigating the different physical mechanisms in place in RQQ cores.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا