Do you want to publish a course? Click here

Decoherent time-dependent transport beyond the Landauer-Buttiker formulation: a quantum-drift alternative to quantum jumps

320   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a model for decoherence in time-dependent transport. It boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the Quantum Drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike Quantum Jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state $leftvert 0rightrangle $ that undergoes decoherence. We show the equivalence with the decoherent steady state transport in presence of a B{u}ttikers voltage probe. In order to test the dynamics, we consider two many-spin systems whith a local energy fluctuation. A two-spin system is reduced to a two level system (TLS) that oscillates among $leftvert 0rightrangle $ $equiv $ $ leftvert uparrow downarrow rightrangle $ and $leftvert 1rightrangle equiv $ $leftvert downarrow uparrow rightrangle $. We show that QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the non-trivial bifurcation of the damping rates at a critical point, i.e. the quantum dynamical phase transition. We also address the spin-wave like dynamics of local polarization in a spin chain. The QD average solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt Echo (LE), we find that the pure states $leftvert 0rightrangle $ and $leftvert 1right rangle $ are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state. Because its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.



rate research

Read More

Dynamical quantum jumps were initially conceived by Bohr as objective events associated with the emission of a light quantum by an atom. Since the early 1990s they have come to be understood as being associated rather with the detection of a photon by a measurement device, and that different detection schemes result in different types of jumps (or diffusion). Here we propose experimental tests to rigorously prove the detector-dependence of the stochastic evolution of an individual atom. The tests involve no special preparation of the atom or field, and the required efficiency can be as low as eta ~58%.
In the independent electron approximation, the average (energy/charge/entropy) current flowing through a finite sample S connected to two electronic reservoirs can be computed by scattering theoretic arguments which lead to the famous Landauer-Buttiker formula. Another well known formula has been proposed by Thouless on the basis of a scaling argument. The Thouless formula relates the conductance of the sample to the width of the spectral bands of the infinite crystal obtained by periodic juxtaposition of S. In this spirit, we define Landauer-Buttiker crystalline currents by extending the Landauer-Buttiker formula to a setup where the sample S is replaced by a periodic structure whose unit cell is S. We argue that these crystalline currents are closely related to the Thouless currents. For example, the crystalline heat current is bounded above by the Thouless heat current, and this bound saturates iff the coupling between the reservoirs and the sample is reflectionless. Our analysis leads to a rigorous derivation of the Thouless formula from the first principles of quantum statistical mechanics.
104 - Huw Price , Ken Wharton 2015
Quantum weirdness has been in the news recently, thanks to an ingenious new experiment by a team led by Roland Hanson, at the Delft University of Technology. Much of the coverage presents the experiment as good (even conclusive) news for spooky action-at-a-distance, and bad news for local realism. We point out that this interpretation ignores an alternative, namely that the quantum world is retrocausal. We conjecture that this loophole is missed because it is confused for superdeterminism on one side, or action-at-a-distance itself on the other. We explain why it is different from these options, and why it has clear advantages, in both cases.
The quantum fluctuations of the entropy production for fermionic systems in the Landauer-Buttiker non-equilibrium steady state are investigated. The probability distribution, governing these fluctuations, is explicitly derived by means of quantum field theory methods and analysed in the zero frequency limit. It turns out that microscopic processes with positive, vanishing and negative entropy production occur in the system with non-vanishing probability. In spite of this fact, we show that all odd moments (in particular, the mean value of the entropy production) of the above distribution are non-negative. This result extends the second principle of thermodynamics to the quantum fluctuations of the entropy production in the Landauer-Buttiker state. The impact of the time reversal is also discussed.
We present a formulation for investigating quench dynamics across quantum phase transitions in the presence of decoherence. We formulate decoherent dynamics induced by continuous quantum non-demolition measurements of the instantaneous Hamiltonian. We generalize the well-studied universal Kibble-Zurek behavior for linear temporal drive across the critical point. We identify a strong decoherence regime wherein the decoherence time is shorter than the standard correlation time, which varies as the inverse gap above the groundstate. In this regime, we find that the freeze-out time $bar{t}simtau^{{2 u z}/({1+2 u z})}$ for when the system falls out of equilibrium and the associated freeze-out length $bar{xi}simtau^{ u/({1+2 u z})}$ show power-law scaling with respect to the quench rate $1/tau$, where the exponents depend on the correlation length exponent $ u$ and the dynamical exponent $z$ associated with the transition. The universal exponents differ from those of standard Kibble-Zurek scaling. We explicitly demonstrate this scaling behavior in the instance of a topological transition in a Chern insulator system. We show that the freeze-out time scale can be probed from the relaxation of the Hall conductivity. Furthermore, on introducing disorder to break translational invariance, we demonstrate how quenching results in regions of imbalanced excitation density characterized by an emergent length scale which also shows universal scaling. We perform numerical simulations to confirm our analytical predictions and corroborate the scaling arguments that we postulate as universal to a host of systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا