Dynamics of correlations in two-dimensional quantum spin models with long-range interactions: A phase-space Monte-Carlo study


Abstract in English

Interacting quantum spin models are remarkably useful for describing different types of physical, chemical, and biological systems. Significant understanding of their equilibrium properties has been achieved to date, especially for the case of spin models with short-range couplings. However, progress towards the development of a comparable understanding in long-range interacting models, in particular out-of-equilibrium, remains limited. In a recent work, we proposed a semiclassical numerical method to study spin models, the discrete truncated Wigner approximation (DTWA), and demonstrated its capability to correctly capture the dynamics of one- and two-point correlations in one dimensional (1D) systems. Here we go one step forward and use the DTWA method to study the dynamics of correlations in 2D systems with many spins and different types of long-range couplings, in regimes where other numerical methods are generally unreliable. We compute spatial and time-dependent correlations for spin-couplings that decay with distance as a power-law and determine the velocity at which correlations propagate through the system. Sharp changes in the behavior of those velocities are found as a function of the power-law decay exponent. Our predictions are relevant for a broad range of systems including solid state materials, atom-photon systems and ultracold gases of polar molecules, trapped ions, Rydberg, and magnetic atoms. We validate the DTWA predictions for small 2D systems and 1D systems, but ultimately, in the spirt of quantum simulation, experiments will be needed to confirm our predictions for large 2D systems.

Download