On separability problem for circulant S-rings


Abstract in English

A Schur ring (S-ring) over a group $G$ is called separable if every of its similaritities is induced by isomorphism. We establish a criterion for an S-ring to be separable in the case when the group $G$ is cyclic. Using this criterion, we prove that any S-ring over a cyclic $p$-group is separable and that the class of separable circulant S-rings is closed with respect to duality.

Download