Do you want to publish a course? Click here

Superconductivity in Dense Rashba Semiconductor BiTeCl

161   0   0.0 ( 0 )
 Added by Xiao-Jia Chen
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Layered non-centrosymmetric bismuth tellurohalides are being examined as candidates for topological insulators. Pressure is believed to be essential for inducing and tuning topological order in these systems. Through electrical transport and Raman scattering measurements, we find superconductivity in two high-pressure phases of BiTeCl with the different normal state features, carrier characteristics, and upper critical field behaviors. Superconductivity emerges when the resistivity maximum or charge density wave is suppressed by the applied pressure and then persists till the highest pressure of 51 GPa measured. The huge enhancement of the resistivity with three magnitude of orders indicates the possible achievement of the topological order in the dense insulating phase. These findings not only enrich the superconducting family from topological insulators but also pave the road on the search of topological superconductivity in bismuth tellurohalides.



rate research

Read More

We report non-equilibrium magnetodynamics in the Rashba-superconductor GeTe, which lacks inversion symmetry in the bulk. We find that at low temperature the system exhibits a non-equilibrium state, which decays on time scales that exceed conventional electronic scattering times by many orders of magnitude. This reveals a non-equilibrium magnetoresponse that is asymmetric under magnetic field reversal and, strikingly, induces a non-equilibrium superconducting state distinct from the equilibrium one. We develop a model of a Rashba system where non-equilibrium configurations relax on a finite timescale which captures the qualitative features of the data. We also obtain evidence for the slow dynamics in another non-superconducting Rashba system. Our work provides novel insights into the dynamics of non-centrosymmetric superconductors and Rashba systems in general.
The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LAlO3/SrTiO3 interfaces, which exhibit both superconductivity and strong Rashba spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on the realisation of a field-effect LaAlO3/SrTiO3 device, whose physical properties, including superconductivity and SOC, can be tuned over a wide range by a top-gate voltage. We derive a phase diagram, which emphasises a field-effect-induced superconductor-to-insulator quantum phase transition. Magneto-transport measurements indicate that the Rashba coupling constant increases linearly with electrostatic doping. Our results pave the way for the realisation of mesoscopic devices, where these two properties can be manipulated on a local scale by means of top-gates.
Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here, we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor which enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.
106 - T. Yu , M. W. Wu 2016
We show that the {it gapped} triplet superconductivity, i.e., a triplet superconductor with triplet order parameter, can be realized in strong spin-orbit-coupled quantum wells in proximity to $s$-wave superconductor. It is revealed that with the singlet order parameter induced from the superconducting proximity effect, in quantum wells, not only can the triplet pairings arise due to the spin-orbit coupling, but also the triplet order parameter can be induced due to the repulsive effective electron-electron interaction, including the electron-electron Coulomb and electron-phonon interactions. This is a natural extension of the work of de Gennes, in which the repulsive-interaction-induced singlet order parameter arises in the normal metal in proximity to $s$-wave superconductor [Rev. Mod. Phys. {bf 36}, 225 (1964)]. Specifically, we derive the effective Bogoliubov-de Gennes equation, in which the self-energies due to the effective electron-electron interactions contribute to the singlet and triplet order parameters. It is further shown that for the singlet order parameter, it is efficiently suppressed due to this self-energy renormalization; whereas for the triplet order parameter, it is the $p$-wave ($p_xpm ip_y$) one with the ${bf d}$-vector parallel to the effective magnetic field due to the spin-orbit coupling. Finally, we perform the numerical calculation in InSb (100) quantum wells. Specifically, we reveal that the Coulomb interaction is much more important than the electron-phonon interaction at low temperature. Moreover, it shows that with proper electron density, the minimum of the renormalized singlet and the maximum of the induced triplet order parameters are comparable, and hence can be experimentally distinguished.
$MgB_2$ becomes superconducting just below 40 K. Whereas porous polycrystalline samples of $MgB_2$ can be synthesized from boron powders, in this letter we demonstrate that dense wires of $MgB_2$ can be prepared by exposing boron filaments to $Mg$ vapor. The resulting wires have a diameter of 160 ${mu}m$, are better than 80% dense and manifest the full $chi = -1/4{pi}$ shielding in the superconducting state. Temperature-dependent resistivity measurements indicate that $MgB_2$ is a highly conducting metal in the normal state with $rho (40 K)$ = 0.38 $mu Ohm$-$cm$. Using this value, an electronic mean free path, $l approx 600~AA$ can be estimated, indicating that $MgB_2$ wires are well within the clean limit. $T_c$, $H_{c2}(T)$, and $J_c$ data indicate that $MgB_2$ manifests comparable or better superconducting properties in dense wire form than it manifests as a sintered pellet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا