We present an analysis of the diffuse emission at 5 GHz in the first quadrant of the Galactic plane using two months of preliminary intensity data taken with the C-Band All Sky Survey (C-BASS) northern instrument at the Owens Valley Radio Observatory, California. Combining C-BASS maps with ancillary data to make temperature-temperature plots we find synchrotron spectral indices of $beta = -2.65 pm 0.05$ between 0.408 GHz and 5 GHz and $ beta = -2.72 pm 0.09$ between 1.420 GHz and 5 GHz for $-10^{circ} < |b| < -4^{circ}$, $20^{circ} < l < 40^{circ}$. Through the subtraction of a radio recombination line (RRL) free-free template we determine the synchrotron spectral index in the Galactic plane ($ |b| < 4^{circ}$) to be $beta = -2.56 pm 0.07$ between 0.408 GHz and 5 GHz, with a contribution of $53 pm 8$ per cent from free-free emission at 5,GHz. These results are consistent with previous low frequency measurements in the Galactic plane. By including C-BASS data in spectral fits we demonstrate the presence of anomalous microwave emission (AME) associated with the HII complexes W43, W44 and W47 near 30 GHz, at 4.4 sigma, 3.1 sigma and 2.5 sigma respectively. The CORNISH VLA 5 GHz source catalogue rules out the possibility that the excess emission detected around 30;GHz may be due to ultra-compact HII regions. Diffuse AME was also identified at a 4 sigma level within $30^{circ} < l < 40^{circ}$, $-2^{circ} < b < 2^{circ}$ between 5 GHz and 22.8 GHz.