Do you want to publish a course? Click here

Itinerant magnetism in spin-orbit coupled Bose gases

146   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Phases of matter are conventionally characterized by order parameters describing the type and degree of order in a system. For example, crystals consist of spatially ordered arrays of atoms, an order that is lost as the crystal melts. Like- wise in ferromagnets, the magnetic moments of the constituent particles align only below the Curie temperature, TC. These two examples reflect two classes of phase transitions: the melting of a crystal is a first-order phase transition (the crystalline order vanishes abruptly) and the onset of magnetism is a second- order phase transition (the magnetization increases continuously from zero as the temperature falls below TC). Such magnetism is robust in systems with localized magnetic particles, and yet rare in model itinerant systems where the particles are free to move about. Here for the first time, we explore the itinerant magnetic phases present in a spin-1 spin-orbit coupled atomic Bose gas; in this system, itinerant ferromagnetic order is stabilized by the spin-orbit coupling, vanishing in its absence. We first located a second-order phase transition that continuously stiffens until, at a tricritical point, it transforms into a first- order transition (with observed width as small as h x 4 Hz). We then studied the long-lived metastable states associated with the first-order transition. These measurements are all in agreement with theory.



rate research

Read More

Spin-orbit-coupled Bose-Einstein condensates (SOBECs) exhibit two new phases of matter, now known as the stripe and plane-wave phases. When two interacting spin components of a SOBEC spatially overlap, density modulations with periodicity given by the spin-orbit coupling strength appear. In equilibrium, these components fully overlap in the miscible stripe phase, and overlap only in a domain wall in the immiscible plane-wave phase. Here we probe the density modulation present in any overlapping region with optical Bragg scattering, and observe the sudden drop of Bragg scattering as the overlapping region shrinks. Using an atomic analogue of the Talbot effect, we demonstrate the existence of long-range coherence between the different spin components in the stripe phase and surprisingly even in the phase-separated plane-wave phase.
We show that double-quantum spin vortices, which are characterized by doubly quantized circulating spin currents and unmagnetized filled cores, can exist in the ground states of SU(3) spin-orbit coupled Bose gases. It is found that the SU(3) spin-orbit coupling and spin-exchange interaction play important roles in determining the ground-state phase diagram. In the case of effective ferromagnetic spin interaction, the SU(3) spin-orbit coupling induces a three-fold degeneracy to the magnetized ground state, while in the antiferromagnetic spin interaction case, the SU(3) spin-orbit coupling breaks the ordinary phase rule of spinor Bose gases, and allows the spontaneous emergence of double-quantum spin vortices. This exotic topological defect is in stark contrast to the singly quantized spin vortices observed in existing experiments, and can be readily observed by the current magnetization-sensitive phase-contrast imaging technique.
131 - J. Cabedo , J. Claramunt , A. Celi 2019
We study beyond-mean-field properties of interacting spin-1 Bose gases with synthetic Rashba-Dresselhaus spin-orbit coupling at low energies. We derive a many-body Hamiltonian following a tight-binding approximation in quasi-momentum space, where the effective spin dependence of the collisions that emerges from spin-orbit coupling leads to dominant correlated tunneling processes that couple the different bound states. We discuss the properties of the spectrum of the derived Hamiltonian and its experimental signatures. In a certain region of the parameter space, the system becomes integrable, and its dynamics becomes analogous to that of a spin-1 condensate with spin-dependent collisions. Remarkably, we find that such dynamics can be observed in existing experimental setups through quench experiments that are robust against magnetic fluctuations.
We present two Diffusion Monte Carlo (DMC) algorithms for systems of ultracold quantum gases featuring synthetic spin-orbit interactions. The first one is a discrete spin generalization of the T- moves spin-orbit DMC, which provides an upper bound to the fixed-phase energy. The second is a spin-integrated DMC method which recovers the fixed-phase property by avoiding the definition of the effective Hamiltonian involved in the T-moves approach. The latter is a more accurate method but it is restricted to spin-independent two-body interactions. We report a comparison between both algorithms for different systems. As a check of the efficiency of both methods, we compare the DMC energies with results obtained with other numerical methods, finding agreement between both estimation
A spin-orbit coupled two-dimensional (2D) Bose gas is shown to simultaneously possess quasi and true long-range order in the total and relative phase sectors, respectively. The total phase undergoes a Berenzinskii- Kosterlitz-Thouless transition to a low temperature phase with quasi long-range order, as expected for a two- dimensional quantum gas. Additionally, the relative phase undergoes an Ising-type transition building up true long-range order, which is induced by the anisotropic spin-orbit coupling. Based on the Bogoliubov approach, expressions for the total- and relative-phase fluctuations are derived analytically for the low temperature regime. Numerical simulations of the stochastic projected Gross-Pitaevskii equation (SPGPE) give a good agreement with the analytical predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا