Do you want to publish a course? Click here

On the definition and use of the ecliptic in modern astronomy

101   0   0.0 ( 0 )
 Added by Nicole Capitaine
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the problems related to the definition and use of the ecliptic in modern astronomy and we discuss whether the concept of an ecliptic is still needed for some specific uses.



rate research

Read More

We discuss what hampers the rate of scientific progress in our exponentially growing world. The rapid increase in technologies leaves the growth of research result metrics far behind. The reason for this lies in the education of astronomers lacking basic computer science aspects crucially important in the data intensive science era.
We investigated the suitability of the astronomical 15 GHz VLBA observing program MOJAVE-5 for estimation of geodetic parameters, such as station coordinates and Earth orientation parameters. We processed contemporary geodetic dual-band RV and CN experiments observed at 2.3 GHz and 8.6 GHz starting on September 2016 through July 2020 as reference dataset. We showed that the baseline length repeatability from MOJAVE-5 experiments is only a factor of 1.5 greater than from the dedicated geodetic dataset and still below 1~ppb. The wrms of the difference of estimated EOP with respect to the reference IERS C04 time series are a factor of 1.3 to 1.8 worse. We isolated three major differences between the datasets in terms their possible impact on the geodetic results, i.e. the scheduling approach, treatment of the ionospheric delay, and selection of target radio sources. We showed that the major factor causing discrepancies in the estimated geodetic parameters is the different scheduling approach of the datasets. We conclude that systematic errors in MOJAVE-5 dataset are low enough for these data to be used as an excellent testbed for further investigations on the radio source structure effects in geodesy and astrometry.
The European Space Agency (ESA) will inaugurate its third Deep Space Antenna (DSA 3) by the end of 2012. DSA 3 will be located in Argentina near the city of Malargue in the Mendoza province. While the instrument will be primarily dedicated to communications with interplanetary missions, the characteristics of its antenna and receivers will also enable standalone leading scientific contributions, with a high scientific-technological return. We outline here scientific proposals for a radio astronomical use of DSA 3.
The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists and the public to exchange astronomical information easily. The FITS standard, however, is showing its age. Developed in the late 1970s, the FITS authors made a number of implementation choices that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not anticipate the challenges which we are facing today in astronomical computing. Difficulties we now face include, but are not limited to, addressing the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets, and capturing significantly more complex metadata and data relationships. There are members of the community today who find some or all of these limitations unworkable, and have decided to move ahead with storing data in other formats. If this fragmentation continues, we risk abandoning the advantages of broad interoperability, and ready archivability, that the FITS format provides for astronomy. In this paper we detail some selected important problems which exist within the FITS standard today. These problems may provide insight into deeper underlying issues which reside in the format and we provide a discussion of some lessons learned. It is not our intention here to prescribe specific remedies to these issues; rather, it is to call attention of the FITS and greater astronomical computing communities to these problems in the hope that it will spur action to address them.
We review the development of dust science from the first ground-based astronomical observations of dust in space to compositional analysis of individual dust particles and their source objects. A multitude of observational techniques is available for the scientific study of space dust: from meteors and interplanetary dust particles collected in the upper atmosphere to dust analyzed in situ or returned to Earth. In situ dust detectors have been developed from simple dust impact detectors determining the dust hazard in Earth orbit to dust telescopes capable of providing compositional analysis and accurate trajectory determination of individual dust particles in space. The concept of Dust Astronomy has been developed, recognizing that dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles birthplace and their bulk properties, we learn about the remote environment out of which the particles were formed. Dust Observatory missions like Cassini, Stardust, and Rosetta study Saturns satellites and rings and the dust environments of comet Wild 2 and comet Churyumov-Gerasimenko, respectively. Supplemented by simulations of dusty processes in the laboratory we are beginning to understand the dusty environments in space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا