As part of a larger program aimed at better quantifying the uncertainties in stellar computations, we attempt to calibrate the extent of convective overshooting in low to intermediate mass stars by means of eclipsing binary systems. We model 12 such systems, with component masses between 1.3 and 6.2 solar masses, using the detailed binary stellar evolution code STARS, producing grids of models in both metallicity and overshooting parameter. From these, we determine the best fit parameters for each of our systems. For three systems, none of our models produce a satisfactory fit. For the remaining systems, no single value for the convective overshooting parameter fits all the systems, but most of our systems can be well described with an overshooting parameter between 0.09 and 0.15, corresponding to an extension of the mixed region above the core of about 0.1-0.3 pressure scale heights. Of the nine systems where we are able to obtain a good fit, seven can be reasonably well fit with a single parameter of 0.15. We find no evidence for a trend of the extent of overshooting with either mass or metallicity, though the data set is of limited size. We repeat our calculations with a second evolution code, MESA, and we find general agreement between the two codes. For the extension of the mixed region above the convective core required by the MESA models is about 0.15-0.4 pressure scale heights. For the system EI Cep, we find that MESA gives an overshooting region that is larger than the STARS one by about 0.1 pressure scale heights for the primary, while for the secondary the difference is only 0.05 pressure scale heights.