No Arabic abstract
We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing three-dimensional smoothed particle hydrodynamic simulations with Post-Newtonian corrections. Our simulations reveal that debris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disk. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precursor to the subsequent tidal disruption flare. The possible radiated energy is up to ~2*10^{52} erg for a 1 Msun star orbiting a 10^6 Msun black hole. We also find that a retrograde (prograde) black hole spin causes the shock-induced circularization timescale to be shorter (longer) than that of a non-spinning black hole in both cooling cases. The circularization timescale is remarkably long in the radiatively efficient cooling case, and is also sensitive to black hole spin. Specifically, Lense-Thirring torques cause dynamically important nodal precession, which significantly delays debris circularization. On the other hand, nodal precession is too slow to produce observable signatures in the radiatively inefficient case. We also discuss the relationship between our simulations and the parabolic TDEs that are characteristic of most stellar tidal disruptions.
We show results from the radiation hydrodynamics (RHD) simulations of tidal disruption of a star on a parabolic orbit by a supermassive black hole (SMBH) based on a three-dimensional smoothed particle hydrodynamics code with radiative transfer. We find that such a tidally disrupted star fragment and form clumps soon after its tidal disruption. The fragmentation results from the endothermic processes of ionization and dissociation that reduce the gas pressure, leading to local gravitational collapse. Radiative cooling is less effective because the stellar debris is still highly optically thick in such an early time. Our simulations reveal that a solar-type star with a stellar density profile of n=3 disrupted by a 10^6 solar mass black hole produces $sim20$ clumps of masses in the range of 0.1 to 12 Jupiter masses. The mass fallback rate decays with time, with pronounced spikes from early to late time. The spikes provide evidence for the clumps of the returning debris, while the clumps on the unbound debris can be potentially freely-floating planets and brown dwarfs. This ionization and dissociation induced fragmentation on a tidally disrupted star are a promising candidate mechanism to form low-mass stars to planets around an SMBH.
The merger rate of stellar-mass black hole binaries (sBHBs) inferred by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) suggests the need for an efficient source of sBHB formation. Active galactic nucleus (AGN) disks are a promising location for the formation of these sBHBs, as well as binaries of other compact objects, because of powerful torques exerted by the gas disk. These gas torques cause orbiting compact objects to migrate towards regions in the disk where inward and outward torques cancel, known as migration traps. We simulate the migration of stellar mass black holes in an example of a model AGN disk, using an augmented N-body code that includes analytic approximations to migration torques, stochastic gravitational forces exerted by turbulent density fluctuations in the disk, and inclination and eccentricity dampening produced by passages through the gas disk, in addition to the standard gravitational forces between objects. We find that sBHBs form rapidly in our model disk as stellar-mass black holes migrate towards the migration trap. These sBHBs are likely to subsequently merge on short time-scales. The process continues, leading to the build-up of a population of over-massive stellar-mass black holes. The formation of sBHBs in AGN disks could contribute significantly to the sBHB merger rate inferred by LIGO.
We perform the first magnetohydrodynamical simulations of tidal disruptions of stars by supermassive black holes. We consider stars with both tangled and ordered magnetic fields, for both grazing and deeply disruptive encounters. When the star survives disruption, we find its magnetic field amplifies by a factor of up to twenty, but see no evidence for the a self-sustaining dynamo that would yield arbitrary field growth. For stars that do not survive, and within the tidal debris streams produced in partial disruptions, we find that the component of the magnetic field parallel to the direction of stretching along the debris stream only decreases slightly with time, eventually resulting in a stream where the magnetic pressure is in equipartition with the gas. Our results suggest that the returning gas in most (if not all) stellar tidal disruptions is already highly magnetized by the time it returns to the black hole.
The masses, rates, and spins of merging stellar-mass binary black holes (BBHs) detected by aLIGO and Virgo provide challenges to traditional BBH formation and merger scenarios. An active galactic nucleus (AGN) disk provides a promising additional merger channel, because of the powerful influence of the gas that drives orbital evolution, makes encounters dissipative, and leads to migration. Previous work showed that stellar mass black holes (sBHs) in an AGN disk migrate to regions of the disk, known as migration traps, where positive and negative gas torques cancel out, leading to frequent BBH formation. Here we build on that work by simulating the evolution of additional sBHs that enter the inner disk by either migration or inclination reduction. We also examine whether the BBHs formed in our models have retrograde or prograde orbits around their centers of mass with respect to the disk, determining the orientation, relative to the disk, of the spin of the merged BBHs. Orbiters entering the inner disk form BBHs with sBHs on resonant orbits near the migration trap. When these sBHs reach ~80 Msun, they form BBHs with sBHs in the migration trap, which over 10 Myr reach ~1000 Msun. We find 68% of the BBHs in our simulation orbit in the retrograde direction, which implies BBHs in our merger channel will have small dimensionless aligned spins, chi_eff. Overall, our models produce BBHs that resemble both the majority of BBH mergers detected thus far (0.66 to 120 Gpc^-3 yr^-1 ) and two recent unusual detections, GW190412 (~0.3 Gpc^-3 yr^-1 ) and GW190521 (~0.1 Gpc^-3 yr^-1 ).
We use global three dimensional radiation magneto-hydrodynamical simulations to study accretion disks onto a $5times 10^8M_{odot}$ black hole with accretion rates varying from $sim 250L_{Edd}/c^2$ to $1500 L_{Edd}/c^2$. We form the disks with torus centered at $50-80$ gravitational radii with self-consistent turbulence initially generated by the magneto-rotational instability. We study cases with and without net vertical magnetic flux. The inner regions of all disks have radiation pressure $sim 10^4-10^6$ times the gas pressure. Non-axisymmetric density waves that steepen into spiral shocks form as gas flows towards the black hole. In simulations without net vertical magnetic flux, Reynolds stress generated by the spiral shocks are the dominant mechanism to transfer angular momentum. Maxwell stress from MRI turbulence can be larger than the Reynolds stress only when net vertical magnetic flux is sufficiently large. Outflows are formed with speed $sim 0.1-0.4c$. When the accretion rate is smaller than $sim 500 L_{Edd}/c^2$, outflows start around $10$ gravitational radii and the radiative efficiency is $sim 5%-7%$ with both magnetic field configurations. With accretion rate reaching $1500 L_{Edd}/c^2$, most of the funnel region close to the rotation axis becomes optically thick and the outflow only develops beyond $50$ gravitational radii. The radiative efficiency is reduced to $1%$. We always find the kinetic energy luminosity associated with the outflow is only $sim 15%-30%$ of the radiative luminosity. The mass flux lost in the outflow is $sim 15%-50%$ of the net mass accretion rates. We discuss implications of our simulation results on the observational properties of these disks.