Do you want to publish a course? Click here

Improving the Description of Nonmagnetic and Magnetic Molecular Crystals via the van der Waals Density Functional

112   0   0.0 ( 0 )
 Added by Masao Obata
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have derived and implemented a stress tensor formulation for the van derWaals density functional (vdW-DF) with spin-polarization-dependent gradient correction (GC) recently proposed by the authors [J. Phys. Soc. Jpn. 82, 093701 (2013)] and applied it to nonmagnetic and magnetic molecular crystals under ambient condition. We found that the cell parameters of the molecular crystals obtained with vdW-DF show an overall improvement compared with those obtained using local density and generalized gradient approximations. In particular, the original vdW-DF with GC gives the equilibrium structural parameters of solid oxygen in the {alpha}-phase, which are in good agreement with the experiment.



rate research

Read More

The non-local van der Waals density functional (vdW-DF) has had tremendous success since its inception in 2004 due to its constraint-based formalism that is rigorously derived from a many-body starting point. However, while vdW-DF can describe binding energies and structures for van der Waals complexes and mixed systems with good accuracy, one long-standing criticism---also since its inception---has been that the $C_6$ coefficients that derive from the vdW-DF framework are largely inaccurate and can be wrong by more than a factor of two. It has long been thought that this failure to describe the $C_6$ coefficients is a conceptual flaw of the underlying plasmon framework used to derive vdW-DF. We prove here that this is not the case and that accurate $C_6$ coefficient can be obtained without sacrificing the accuracy at binding separations from a modified framework that is fully consistent with the constraints and design philosophy of the original vdW-DF formulation. Our design exploits a degree of freedom in the plasmon-dispersion model $omega_{mathbf{q}}$, modifying the strength of the long-range van der Waals interaction and the cross-over from long to short separations, with additional parameters tuned_ to reference systems. Testing the new formulation for a range of different systems, we not only confirm the greatly improved description of $C_6$ coefficients, but we also find excellent performance for molecular dimers and other systems. The importance of this development is not necessarily that particular aspects such as $C_6$ coefficients or binding energies are improved, but rather that our finding opens the door for further conceptual developments of an entirely unexplored direction within the exact same constrained-based non-local framework that made vdW-DF so successful in the first place.
The nonlocal correlation energy in the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004); Phys. Rev. B 76, 125112 (2007); Phys. Rev. B 89, 035412 (2014)] can be interpreted in terms of a coupling of zero-point energies of characteristic modes of semilocal exchange-correlation (xc) holes. These xc holes reflect the internal functional in the framework of the vdW-DF method [Phys. Rev. B 82, 081101(2010)]. We explore the internal xc hole components, showing that they share properties with those of the generalized-gradient approximation. We use these results to illustrate the nonlocality in the vdW-DF description and analyze the vdW-DF formulation of nonlocal correlation.
The adsorption of an adenine molecule on graphene is studied using a first-principles van der Waals functional (vdW-DF) [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)]. The cohesive energy of an ordered adenine overlayer is also estimated. For the adsorption of a single molecule, we determine the optimal binding configuration and adsorption energy by translating and rotating the molecule. The adsorption energy for a single molecule of adenine is found to be 711 meV, which is close to the calculated adsorption energy of the similar-sized naphthalene. Based on the single molecular binding configuration, we estimate the cohesive energy of a two-dimensional ordered overlayer. We find a significantly stronger binding energy for the ordered overlayer than for single-molecule adsorption.
Potassium intercalation in graphite is investigated by first-principles theory. The bonding in the potassium-graphite compound is reasonably well accounted for by traditional semilocal density functional theory (DFT) calculations. However, to investi gate the intercalate formation energy from pure potassium atoms and graphite requires use of a description of the graphite interlayer binding and thus a consistent account of the nonlocal dispersive interactions. This is included seamlessly with ordinary DFT by a van der Waals density functional (vdW-DF) approach [Phys. Rev. Lett. 92, 246401 (2004)]. The use of the vdW-DF is found to stabilize the graphite crystal, with crystal parameters in fair agreement with experiments. For graphite and potassium-intercalated graphite structural parameters such as binding separation, layer binding energy, formation energy, and bulk modulus are reported. Also the adsorption and sub-surface potassium absorption energies are reported. The vdW-DF description, compared with the traditional semilocal approach, is found to weakly soften the elastic response.
The dispersion interaction between a pair of parallel DNA double-helix structures is investigated by means of the van der Waals density functional (vdW-DF) method. Each double-helix structure consists of an infinite repetition of one B-DNA coil with 10 base pairs. This parameter-free density functional theory (DFT) study illustrates the initial step in a proposed vdW-DF computational strategy for large biomolecular problems. The strategy is to first perform a survey of interaction geometries, based on the evaluation of the van der Waals (vdW) attraction, and then limit the evaluation of the remaining DFT parts (specifically the expensive study of the kinetic-energy repulsion) to the thus identified interesting geometries. Possibilities for accelerating this second step is detailed in a separate study. For the B-DNA dimer, the variation in van der Waals attraction is explored at relatively short distances (although beyond the region of density overlap) for a 360 degrees rotation. This study highlights the role of the structural motifs, like the grooves, in enhancing or reducing the vdW interaction strength. We find that to a first approximation, it is possible to compare the DNA double strand at large wall-to-wall separations to the cylindrical shape of a carbon nanotube (which is almost isotropic under rotation). We compare our first-principles results with the atom-based dispersive interaction predicted by DFT-D2 [J. Comp. Chem. 27, 1787 (2006)] and find agreement in the asymptotic region. However, we also find that the differences in the enhancement that occur at shorter distances reveal characteristic features that result from the fact that the vdW-DF method is an electron-based (as opposed to atom-based) description.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا