No Arabic abstract
Transits of hot Jupiters in X-rays and the ultraviolet have been shown to be both deeper and more variable than the corresponding optical transits. This variability has been attributed to hot Jupiters having extended atmospheres at these wavelengths. Using resolved images of the Sun from NASAs Solar Dynamics Observatory spanning 3.5 years of Solar Cycle 24 we simulate transit light curves of a hot Jupiter to investigate the impact of Solar like activity on our ability to reliably recover properties of the planets atmosphere in soft X-rays (94 {AA}), the UV (131-1700 {AA}), and the optical (4500 {AA}). We find that for stars with similar activity levels to the Sun, the impact of stellar activity results in the derived radius of the planet in soft X-ray/EUV to be underestimated by up-to 25% or overestimated by up-to 50% depending on whether the planet occults active regions. We also find that in up-to 70% of the X-ray light curves the planet transits over bright star spots. In the far ultraviolet (1600 & 1700 {AA}), we find the mean recovered value of the planet-to-star radius ratio to be over-estimated by up-to 20%. For optical transits we are able to consistently recover the correct planetary radius. We also address the implications of our results for transits of WASP-12b and HD 189733b at short wavelengths.
WD 1145+017 is a unique white dwarf system that has a heavily polluted atmosphere, an infrared excess from a dust disk, numerous broad absorption lines from circumstellar gas, and changing transit features, likely from fragments of an actively disintegrating asteroid. Here, we present results from a large photometric and spectroscopic campaign with Hubble, Keck , VLT, Spitzer, and many other smaller telescopes from 2015 to 2018. Somewhat surprisingly, but consistent with previous observations in the u band, the UV transit depths are always shallower than those in the optical. We develop a model that can quantitatively explain the observed bluing and the main findings are: I. the transiting objects, circumstellar gas, and white dwarf are all aligned along our line of sight; II. the transiting object is blocking a larger fraction of the circumstellar gas than of the white dwarf itself. Because most circumstellar lines are concentrated in the UV, the UV flux appears to be less blocked compared to the optical during a transit, leading to a shallower UV transit. This scenario is further supported by the strong anti-correlation between optical transit depth and circumstellar line strength. We have yet to detect any wavelength-dependent transits caused by the transiting material around WD 1145+017.
CoRoT-7b, the first super-Earth with measured radius discovered, has opened the new field of rocky exoplanets characterisation. To better understand this interesting system, new observations were taken with the CoRoT satellite. During this run 90 new transits were obtained in the imagette mode. These were analysed together with the previous 151 transits obtained in the discovery run and HARPS radial velocity observations to derive accurate system parameters. A difference is found in the posterior probability distribution of the transit parameters between the previous CoRoT run (LRa01) and the new run (LRa06). We propose this is due to an extra noise component in the previous CoRoT run suspected to be transit spot occultation events. These lead to the mean transit shape becoming V-shaped. We show that the extra noise component is dominant at low stellar flux levels and reject these transits in the final analysis. We obtained a planetary radius, $R_p= 1.585pm0.064,R_{oplus}$, in agreement with previous estimates. Combining the planetary radius with the new mass estimates results in a planetary density of $ 1.19 pm 0.27, rho_{oplus}$ which is consistent with a rocky composition. The CoRoT-7 system remains an excellent test bed for the effects of activity in the derivation of planetary parameters in the shallow transit regime.
Surface magnetism is believed to be the main driver of coronal heating and stellar wind acceleration. Coronae are believed to be formed by plasma confined in closed magnetic coronal loops of the stars, with winds mainly originating in open magnetic field line regions. In this Chapter, we review some basic properties of stellar coronae and winds and present some existing models. In the last part of this Chapter, we discuss the effects of coronal winds on exoplanets.
Short-period sub-Neptunes with substantial volatile envelopes are among the most common type of known exoplanets. However, recent studies of the Kepler population have suggested a dearth of sub-Neptunes on highly irradiated orbits, where they are vulnerable to atmospheric photoevaporation. Physically, we expect this photoevaporation desert to depend on the total lifetime X-ray and extreme ultraviolet flux, the main drivers of atmospheric escape. In this work, we study the demographics of sub-Neptunes as a function of lifetime exposure to high energy radiation and host star mass. We find that for a given present day insolation, planets orbiting a 0.3 $M_{sun}$ star experience $sim$100 $times$ more X-ray flux over their lifetimes versus a 1.2 $M_{sun}$ star. Defining the photoevaporation desert as a region consistent with zero occurrence at 2 $sigma$, the onset of the desert happens for integrated X-ray fluxes greater than 1.43 $times 10^{22}$ erg/cm$^2$ to 8.23 $times 10^{20}$ erg/cm$^2$ as a function of planetary radii for 1.8 -- 4 $R_{oplus}$. We also compare the location of the photoevaporation desert for different stellar types. We find much greater variability in the desert onset in bolometric flux space compared to integrated X-ray flux space, suggestive of photoevaporation driven by steady state stellar X-ray emissions as the dominant control on desert location. Finally, we report tentative evidence for the sub-Neptune valley, first seen around Sun-like stars, for M & K dwarfs. The discovery of additional planets around low-mass stars from surveys such as the TESS mission will enable detailed exploration of these trends.
Past UV and optical observations of stars hosting hot Jupiters have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening ISM. Inspired by this result, we study the effect of ISM absorption on activity measurements (S and logR$_{rm HK}$ indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental, stellar, and ISM parameters. We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km/s and for ISM CaII column densities logN$_{rm CaII}$>12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM CaII column density of logN$_{rm CaII}$=12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the logR$_{rm HK}$ value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies.