Valley is a useful degree of freedom for non-dissipative electronics since valley current that can flow even in an insulating material does not accompany electronic current. We use dual-gated bilayer graphene in the Hall bar geometry to electrically control broken inversion symmetry or Berry curvature as well as the carrier density to generate and detect the pure valley current. We find a large nonlocal resistance and a cubic scaling between the nonlocal resistance and the local resistivity in the insulating regime at zero-magnetic field and 70 K as evidence of the pure valley current. The electrical control of the valley current in the limit of zero conductivity allows non-dissipative induction of valley current from electric field and thus provides a significant contribution to the advancement of non-dissipative electronics.