Do you want to publish a course? Click here

Discontinuous Galerkin approximation of linear parabolic problems with dynamic boundary conditions

203   0   0.0 ( 0 )
 Added by Paola F. Antonietti
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we propose and analyze a Discontinuous Galerkin method for a linear parabolic problem with dynamic boundary conditions. We present the formulation and prove stability and optimal a priori error estimates for the fully discrete scheme. More precisely, using polynomials of degree $pgeq 1$ on meshes with granularity $h$ along with a backward Euler time-stepping scheme with time-step $Delta t$, we prove that the fully-discrete solution is bounded by the data and it converges, in a suitable (mesh-dependent) energy norm, to the exact solution with optimal order $h^p + Delta t$. The sharpness of the theoretical estimates are verified through several numerical experiments.



rate research

Read More

126 - Yvon Maday , Carlo Marcati 2018
We study the regularity in weighted Sobolev spaces of Schr{o}dinger-type eigenvalue problems, and we analyse their approximation via a discontinuous Galerkin (dG) $hp$ finite element method. In particular, we show that, for a class of singular potentials, the eigenfunctions of the operator belong to analytic-type non homogeneous weighted Sobolev spaces. Using this result, we prove that the an isotropically graded $hp$ dG method is spectrally accurate, and that the numerical approximation converges with exponential rate to the exact solution. Numerical tests in two and three dimensions confirm the theoretical results and provide an insight into the the behaviour of the method for varying discretisation parameters.
147 - Limin Ma 2020
In this paper, we present a unified analysis of the superconvergence property for a large class of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and linear elasticity problems with symmetric stress formulations. Based on this result, some locally postprocess schemes are employed to improve the accuracy of displacement by order min(k+1, 2) if polynomials of degree k are employed for displacement. Some numerical experiments are carried out to validate the theoretical results.
Generalizing the framework of an ultra-weak formulation for a hypersingular integral equation on closed polygons in [N. Heuer, F. Pinochet, arXiv 1309.1697 (to appear in SIAM J. Numer. Anal.)], we study the case of a hypersingular integral equation on open and closed polyhedral surfaces. We develop a general ultra-weak setting in fractional-order Sobolev spaces and prove its well-posedness and equivalence with the traditional formulation. Based on the ultra-weak formulation, we establish a discontinuous Petrov-Galerkin method with optimal test functions and prove its quasi-optimal convergence in related Sobolev norms. For closed surfaces, this general result implies quasi-optimal convergence in the L^2-norm. Some numerical experiments confirm expected convergence rates.
We consider a class of time dependent second order partial differential equations governed by a decaying entropy. The solution usually corresponds to a density distribution, hence positivity (non-negativity) is expected. This class of problems covers important cases such as Fokker-Planck type equations and aggregation models, which have been studied intensively in the past decades. In this paper, we design a high order discontinuous Galerkin method for such problems. If the interaction potential is not involved, or the interaction is defined by a smooth kernel, our semi-discrete scheme admits an entropy inequality on the discrete level. Furthermore, by applying the positivity-preserving limiter, our fully discretized scheme produces non-negative solutions for all cases under a time step constraint. Our method also applies to two dimensional problems on Cartesian meshes. Numerical examples are given to confirm the high order accuracy for smooth test cases and to demonstrate the effectiveness for preserving long time asymptotics.
236 - Yvon Maday , Carlo Marcati 2019
We study a class of nonlinear eigenvalue problems of Scrodinger type, where the potential is singular on a set of points. Such problems are widely present in physics and chemistry, and their analysis is of both theoretical and practical interest. In particular, we study the regularity of the eigenfunctions of the operators considered, and we propose and analyze the approximation of the solution via an isotropically refined hp discontinuous Galerkin (dG) method. We show that, for weighted analytic potentials and for up-to-quartic nonlinearities, the eigenfunctions belong to analytic-type non homogeneous weighted Sobolev spaces. We also prove quasi optimal a priori estimates on the error of the dG finite element method; when using an isotropically refined hp space the numerical solution is shown to converge with exponential rate towards the exact eigenfunction. In addition, we investigate the role of pointwise convergence in the doubling of the convergence rate for the eigenvalues with respect to the convergence rate of eigenfunctions. We conclude with a series of numerical tests to validate the theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا