No Arabic abstract
We present a spectroscopic and photometric study of the Double Period Variable HD170582. Based on the study of the ASAS V-band light curve we determine an improved orbital period of 16.87177 $pm$ 0.02084 days and a long period of 587 days. We disentangled the light curve into an orbital part, determining ephemerides and revealing orbital ellipsoidal variability with unequal maxima, and a long cycle, showing quasi-sinusoidal changes with amplitude $Delta V$= 0.1 mag. Assuming synchronous rotation for the cool stellar component and semi-detached configuration we find a cool evolved star of $M_{2}$ = 1.9 $pm$ 0.1 $M_{odot}$, $T_{2}$ = 8000 $pm$ 100 $K$ and $R_{2}$ = 15.6 $pm$ 0.2 $R_{odot}$, and an early B-type dwarf of $M_{1}$ = 9.0 $pm$ 0.2 $M_{odot}$. The B-type star is surrounded by a geometrically and optically thick accretion disc of radial extension 20.8 $pm$ 0.3 $R_{odot}$ contributing about 35% to the system luminosity at the $V$ band. Two extended regions located at opposite sides of the disc rim, and hotter than the disc by 67% and 46%, fit the light curve asymmetries. The system is seen under inclination 67.4 $pm$ 0.4 degree and it is found at a distance of 238 $pm$ 10 pc. Specially interesting is the double line nature of HeI 5875; two absorption components move in anti-phase during the orbital cycle; they can be associated with the shock regions revealed by the photometry. The radial velocity of one of the HeI 5875 components closely follows the donor radial velocity, suggesting that the line is formed in a wind emerging near the stream-disc interacting region.
We present a photometric and spectroscopic study of HD 50526, an ellipsoidal binary member of the group Double Periodic Variable stars. Performing data-mining in photometric surveys and conducting new spectroscopic observations with several spectrographs during 2008 to 2015, we obtained orbital and stellar parameters of the system. The radial velocities were analyzed with the genetic PIKAIA algorithm, whereas Doppler tomography maps for the H$alpha$ and H$beta$ lines were constructed with the Total Variation Minimization code. An optimized simplex-algorithm was used to solve the inverse-problem adjusting the light curve with the best stellar parameters for the system. We find an orbital period of $6.701 pm 0.001 ~mathrm{d}$ and a long photometric cycle of $191 pm 2 ~mathrm{d}$. We detected the spectral features of the coldest star, and modeled it with a $log{g} = 2.79 pm 0.02 ~mathrm{dex}$ giant of mass $1.13 pm 0.02 ~mathrm{M_{odot}}$ and effective temperature $10500 pm 125 ~mathrm{K}$. In addition, we determine a mass ratio $q= 0.206 pm 0.033$ and that the hot star is a B-type dwarf of mass $5.48 pm 0.02 ~mathrm{M_{odot}}$. The $V$-band orbital light curve can be modeled including the presence of an accretion disk around the hotter star. This fills the Roche lobe of the hotter star, and has a radius $14.74 pm 0.02 ~mathrm{R_{odot}}$ and temperature at the outer edge $9400 ~mathrm{K}$. Two bright spots located in the disk account for the global morphology of the light curve. The Doppler tomography maps of H$alpha$ and H$beta$, reveal complex structures of mass fluxes in the system.
New high-quality CCD photometric light curves for the W UMa-type systems V410 Aur, CK Boo, FP Boo, V921 Her, ET Leo, XZ Leo, V839 Oph, V2357 Oph, AQ Psc and VY Sex are presented. The new multicolor light curves, combined with the spectroscopic data recently obtained at David Dunlap Observatory, are analyzed with the Wilson-Devinney code to yield the physical parameters (masses, radii and luminosities) of the components. Our models for all ten systems resulted in a contact configuration. Four binaries (V921 Her, XZ Leo, V2357 Oph and VY Sex) have low, while two (V410 Aur and CK Boo) have high fill-out factors. FP Boo, ET Leo, V839 Oph and AQ Psc have medium values of the fill-out factor. Three of the systems (FP Boo, V921 Her and XZ Leo) have very bright primaries as a result of their high temperatures and large radii.
This paper presents the results of a combined spectroscopic and photometric study of 20 contact binary systems: HV Aqr, OO Aql, FI Boo, TX Cnc, OT Cnc, EE Cet, RWCom, KR Com, V401 Cyg, V345 Gem, AK Her, V502 Oph, V566 Oph, V2612 Oph, V1363 Ori, V351 Peg, V357 Peg, Y Sex, V1123 Tau and W UMa, which was conducted in the frame of the W UMa Project. Together with 51 already covered by the project and an additional 67 in the existing literature, these systems bring the total number of contact binaries with known combined spectroscopic and photometric solutions to 138. It was found that mass, radius and luminosity of the components follow certain relations along the MS and new empirical power relations are extracted.We found that 30 per cent of the systems in the current sample show extreme values in their parameters, expressed in their mass ratio or fill-out factor. This study shows that, among the contact binary systems studied, some have an extremely low mass ratio (q < 0.1) or an ultra-short orbital period (Porb < 0.25 d), which are expected to show evidence of mass transfer progress. The evolutionary status of these components is discussed with the aid of correlation diagrams and their physical and orbital parameters compared to those in the entire sample of known contact binaries. The existence of very short orbital periods confirms the very slow nature of the merging process, which seems to explain why their components still exist as MS stars in contact confgurations even after several Gyr of evolution.
We present multi-epoch optical and near-infrared (NIR) photometry and spectroscopy of the spectroscopic binary T Tauri star DQ Tau. The photometric monitoring, obtained using SMARTS ANDICAM, recovers the previously-seen correlation between optical flux and the 15.8-day binary orbital period, with blue flux peaks occurring close to most observed periastron passages. For the first time, we find an even more consistent correlation between orbital period and NIR brightness and color. The onset of pulse events in the NIR on average precedes those in the optical by a few days, with the rise usually starting near apastron orbital phase. We further obtained five epochs of spectroscopy using IRTF SpeX, with a wavelength range of 0.8 to 5 microns, and derived spectra of the infrared excess emission. The shape and strength of the excess varies with time, with cooler and weaker characteristic dust emission (T ~ 1100-1300 K) over most of the binary orbit, and stronger/warmer dust emission (T ~ 1600 K, indicative of dust sublimation) just before periastron passage. We suggest our results are broadly consistent with predictions of simulations of disk structure and accretion flows around close binaries, with the varying dust emission possibly tracing the evolution of accretion streams falling inwards through a circumbinary disk cavity and feeding the accretion pulses traced by the optical photometry and NIR emission lines. However, our results also show more complicated behavior that is not fully explained by this simple picture, and will require further observations and modeling to fully interpret.
The paper presents combined spectroscopic and photometric orbital solutions for ten close binary systems: CN And, V776 Cas, FU Dra, UV Lyn, BB Peg, V592 Per, OU Ser, EQ Tau, HN UMa and HT Vir. The photometric data consist of new multicolor light curves, while the spectroscopy has been recently obtained within the radial velocity program at the David Dunlap Observatory (DDO). Absolute parameters of the components for these binary systems are derived. Our results confirm that CN And is not a contact system. Its configuration is semi-detached with the secondary component filling its Roche lobe. The configuration of nine other systems is contact. Three systems (V776 Cas, V592 Per and OU Ser) have high (44-77%) and six (FU Dra, UV Lyn, BB Peg, EQ Tau, HN UMa and HT Vir) low or intermediate (8-32%) fill-out factors. The absolute physical parameters are derived.