The anisotropy of angular distributions of emitted nucleons and light charged particles for the asymmetric reaction system, $^{40}$Ar+$^{197}$Au, at b=6fm and $E_{beam}$=35, 50 and 100MeV/u, are investigated by using the Improved Quantum Molecular Dynamics model. The competition between the symmetry potential and Coulomb potential shows large impacts on the nucleons and light charged particles emission in projectile and target region. As a result of this competition, the angular distribution anisotropy of coalescence invariant Y(n)/Y(p) ratio at forward regions shows sensitivity to the stiffness of symmetry energy as well as the value of Y(n)/Y(p). This observable can be further checked against experimental data to understand the reaction mechanism and to extract information about the symmetry energy at subsaturation densities.