We report the first mass and distance measurement of a caustic-crossing binary system OGLE-2014-BLG-1050L using the space-based microlens parallax method. emph{Spitzer} captured the second caustic-crossing of the event, which occurred $sim$10 days before that seen from Earth. Due to the coincidence that the source-lens relative motion was almost parallel to the direction of the binary-lens axis, the four-fold degeneracy, which was known before only to occur in single-lens events, persists in this case, leading to either a lower-mass (0.2 $M_odot$ and 0.07 $M_odot$) binary at $sim$1.1 kpc or a higher-mass (0.9 $M_odot$ and 0.35 $M_odot$) binary at $sim$3.5 kpc. However, the latter solution is strongly preferred for reasons including blending and lensing probability. OGLE-2014-BLG-1050L demonstrates the power of microlens parallax in probing stellar and substellar binaries.