Do you want to publish a course? Click here

Usefulness of effective field theory for boosted Higgs production

122   0   0.0 ( 0 )
 Added by Mao Zeng
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The Higgs + jet channel at the LHC is sensitive to the effects of new physics both in the total rate and in the transverse momentum distribution at high p_T. We examine the production process using an effective field theory (EFT) language and discuss the possibility of determining the nature of the underlying high scale physics from boosted Higgs production. The effects of heavy color triplet scalars and top partner fermions with TeV scale masses are considered as examples and Higgs-gluon couplings of dimension-5 and dimension-7 are included in the EFT. As a by-product of our study, we examine the region of validity of the EFT. Dimension-7 contributions in realistic new physics models give effects in the high p_T tail of the Higgs signal which are so tiny that they are likely to be unobservable.



rate research

Read More

239 - S. Dawson , I. M. Lewis , Mao Zeng 2014
We use an effective field theory (EFT) which includes all possible gluon-Higgs dimension-5 and dimension-7 operators to study Higgs boson plus jet production in next-to-leading order QCD. The EFT sheds light on the effect of a finite top quark mass as well as any Beyond-the-Standard Model (BSM) modifications of Higgs-gluon effective couplings. In the gluon channel, the accuracy of the heavy-top approximation for differential distributions arises from the non-interference between the helicity amplitudes of the G^3 h and G^2 h operators in the m_h < p_T limit at lowest order. One dimension-7 operator involving quark bilinears, however, contributes significantly at high p_T, and potentially offers a channel for seeing BSM effects. One-loop renormalization of these operators is determined, allowing resummation of large logarithms via renormalization group running. NLO numerical results at the LHC are presented, which include O(1/m_t^2) contributions in the SM limit.
Inclusive Higgs boson production at large transverse momentum is induced by different production channels. We focus on the leading production through gluon fusion, and perform a consistent combination of the state of the art calculations obtained in the infinite-top-mass effective theory at next-to-next-to-leading order (NNLO) and in the full Standard Model (SM) at next-to-leading order (NLO). We thus present approximate QCD predictions for this process at NNLO, and a study of the corresponding perturbative uncertainties. This calculation is then compared with those obtained with commonly used event generators, and we observe that the description of the considered kinematic regime provided by these tools is in good agreement with state of the art calculations. Finally, we present accurate predictions for other production channels such as vector boson fusion, and associated production with a gauge boson, and with a $tbar{t}$ pair. We find that, at large transverse momentum, the contribution of other production modes is substantial, and therefore must be included for a precise theory prediction of this observable.
We review a Soft Collinear Effective Theory approach to the study of factorization and resummation of QCD effects in top-quark pair production. In particular, we consider differential cross sections such as the top-quark pair invariant mass distribution and the top-quark transverse momentum and rapidity distributions. Furthermore, we focus our attention on the large invariant mass and large transverse momentum kinematic regions, characteristic of boosted top quarks. We discuss the factorization of the differential cross section in the double soft gluon emission and small top-quark mass limit, both in Pair Invariant Mass (PIM) and One Particle Inclusive (1PI) kinematics. The factorization formulas can be employed in order to implement the simultaneous resummation of soft emission and small mass effects up to next-to-next-to-leading logarithmic accuracy. The results are also used to construct improved next-to-next-to-leading order approximations for the differential cross sections.
We consider the phenomenological implications of charged scalar extensions of the SM Higgs sector in addition to EFT couplings of this new state to SM matter. We perform a detailed investigation of modifications of loop-induced decays of the 125 GeV Higgs boson, which receives corrections from the propagating charged scalars alongside one-loop EFT operator insertions and demonstrate that the interplay of $Hto gammagamma$ and $Hto Zgamma$ decays can be used to clarify the additional states phenomenology in case a discovery is made in the future. In parallel, EFT interactions of the charged Higgs can lead to a decreased sensitivity to the virtual presence of charged Higgs states, which can significantly weaken the constraints that are naively expected from the precisely measured $Hto gammagamma$ branching ratio. Again $Hto Zgamma$ measurements provide complementary sensitivity that can be exploited in the future.
Assuming the presence of physics beyond the Standard Model (SM) with a characteristic scale M ~ O(10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1-loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine the constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Lambda < M, a condition we denote by EFT-naturalness. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا