No Arabic abstract
We review the results of the 1988 multi-wavelength campaign on the late-type eclipsing binary YY Geminorum. Observations include: broad-band optical and near infra-red photometry, simultaneous optical and ultraviolet (IUE) spectroscopy, X-ray (Ginga) and radio (VLA) data. From models fitted to the optical light curves, fundamental physical parameters have been determined together with evidence for transient maculations (spots) located near quadrature longitudes and intermediate latitudes. Eclipses were observed at optical, ultraviolet and radio wavelengths. Significant drops in 6cm radio emission near the phases of both primary and secondary eclipse indicate relatively compact radio emitting volumes that may lie between the binary components. IUE observations during secondary eclipse are indicative of a uniform chromosphere saturated with MgII plage-type emission and an extended volume of Ly$alpha$ emission. Profile fitting of high-dispersion H alpha spectra confirms the chromospheric saturation and indicates significant H$alpha$ opacity to heights of a few percent of the photospheric radius. There is evidence for an enhanced H alpha emission region visible near phase 0.25-0.35 which may be associated with a large spot on the primary and with two small optical flares which were also observed at other wavelengths: one in microwave radiation and the other in X-rays. For both flares, L_X/L_opt is consistent with energy release in closed magnetic structures.
YY Gem is a short-period eclipsing binary system containing two nearly identical, rapidly rotating, very active early-M dwarfs. This binary represents an important benchmark system for calibrating empirical relations between fundamental properties of low-mass stars and for testing theories of interior structure and evolution of these objects. Both components of YY Gem exhibit inflated radii, which has been attributed to poorly understood magnetic activity effects. Despite a long history of magnetic activity studies of this system no direct magnetic field measurements have been made for it. Here we present a comprehensive characterisation of the surface magnetic field in both components of YY Gem. We reconstructed the global field topologies with the help of a tomographic inversion technique applied to high-resolution spectropolarimetric data. This analysis revealed moderately complex global fields with a typical strength of 200-300 G and anti-aligned dipolar components. A complementary Zeeman intensification analysis of the disentangled intensity spectra showed that the total mean field strength reaches 3.2-3.4 kG in both components of YY Gem. We used these results together with other recent magnetic field measurements of M dwarfs to investigate the relation between the global and small-scale fields in these stars. We also assessed predictions of competing magnetoconvection interior structure models developed for YY Gem, finding that only one of them anticipated the surface field strength compatible with our observations. Results of our star spot mapping of YY Gem do not support the alternative family of theoretical stellar models which attempts to explain the radii inflation by postulating a large spot filling factor.
We investigate the nature of the unidentified very-high-energy (VHE) gamma-ray object, HESS J1832-093, in a multi-wavelength context. Based on X-ray variability and spectral index ($Gamma_Xsim,1.5$), and its broad-band spectrum (which was remarkably similar to HESS J0632+057, a confirmed gamma-ray binary), HESS J1832-093 has been considered to be a strong gamma-ray binary candidate in previous works. In this work, we provide further evidence for this scenario. We obtained a spectrum of its IR counterpart using Gemini/Flamingo, finding absorption lines that are usually seen in massive stars, in particular O stars. We also obtained a rather steep ATCA spectrum ($alpha=-1.18^{+1.04}_{-0.88}$) which prefers a gamma-ray binary over an AGN scenario. Based on spatial-spectral analysis and variability search, we found that 4FGL J1832.9-0913 is possible to be associated with SNR G22.7-0.2 rather than with HESS J1832-093 only.
We announce the discovery of a new eclipsing hot subdwarf B + M dwarf binary, EC 10246-2707, and present multi-colour photometric and spectroscopic observations of this system. Similar to other HW Vir-type binaries, the light curve shows both primary and secondary eclipses, along with a strong reflection effect from the M dwarf; no intrinsic light contribution is detected from the cool companion. The orbital period is 0.1185079936 +/- 0.0000000009 days, or about three hours. Analysis of our time-series spectroscopy reveals a velocity semi-amplitude of K_1 = 71.6 +/- 1.7 km/s for the sdB and best-fitting atmospheric parameters of Teff = 28900 +/- 500 K, log g = 5.64 +/- 0.06, and log[N(He)/N(H)] = -2.5 +/- 0.2. Although we cannot claim a unique solution from modeling the light curve, the best-fitting model has an sdB mass of 0.45 Msun and a cool companion mass of 0.12 Msun. These results are roughly consistent with a canonical-mass sdB and M dwarf separated by a ~ 0.84 Rsun. We find no evidence of pulsations in the light curve and limit the amplitude of rapid photometric oscillations to < 0.08%. Using 15 years of eclipse timings, we construct an O-C diagram but find no statistically significant period changes; we rule out |P-dot| > 7.2 x 10^(-12). If EC 10246-2707 evolves into a cataclysmic variable, its period should fall below the famous CV period gap.
Abriged version for astroph: The young late-type star V1118 Orionis was in outburst from 2005 to 2006. We followed the outburst with optical and near-infrared photometry; the X-ray emission was further probed with observations taken with XMM-Newton and Chandra during and after the outburst. In addition, we obtained mid-infrared photometry and spectroscopy with Spitzer at the peak of the outburst and in the post-outburst phase. The spectral energy distribution of V1118 Ori varied significantly over the course of the outburst. The optical flux showed the largest variations, most likely due to enhanced emission by a hot spot. The latter dominated the optical and near-infrared emission at the peak of the outburst, while the disk emission dominated in the mid-infrared. The X-ray flux correlated with the optical and infrared fluxes, indicating that accretion affected the magnetically active corona and the stellar magnetosphere. The thermal structure of the corona was variable with some indication of a cooling of the coronal temperature in the early phase of the outburst with a gradual return to normal values. Color-color diagrams in the optical and infrared showed variations during the outburst, with no obvious signature of reddening due to circumstellar matter. Using MC realizations of star+disk+hotspot models to fit the SED in ``quiescence and at the peak of the outburst, we determined that the mass accretion rate varied from about 2.5E-7 Msun/yr to 1E-6 Msun/yr; in addition the fractional area of the hotspot increased significantly as well. The multi-wavelength study of the V1118 Ori outburst helped us to understand the variations in spectral energy distributions and demonstrated the interplay between the disk and the stellar magnetosphere in a young, strongly accreting star.
We present and analyze the optical photometric and spectroscopic data of the Be/X-ray binary MXB 0656-072 from 2006 to 2009. A 101.2-day orbital period is found, for the first time, from the present public X-ray data(Swift/BAT and RXTE/ASM). The anti-correlation between the H$alpha$ emission and the $UBV$ brightness of MXB 0656$-$072 during our 2007 observations indicates that a mass ejection event took place in the system. After the mass ejection, a low-density region might develop around the Oe star. With the outward motion of the circumstellar disk, the outer part of the disk interacted with the neutron star around its periastron passage and a series of the X-ray outbursts were triggered between MJD 54350 and MJD 54850. The PCA--HEXTE spectra during the 2007-2008 X-ray outbursts could be well fitted by a cut-off power law with low energy absorption, together with an iron line around 6.4 keV, and a broad cyclotron resonance feature around 30 keV. The same variability of the soft and hard X-ray colors in 2.3-21 keV indicated that there were no overall changes in the spectral shape during the X-ray outbursts, which might be only connected with the changes of the mass-accretion rate onto the neutron star.