No Arabic abstract
We propose a continuum representation of the Dynamical Mean Field Theory, in which we were able to derive an exact overlap between the Dynamical Mean Field Theory and band structure methods, such as the Density Functional Theory. The implementation of this exact double-counting shows improved agreement between theory and experiment in several correlated solids, such as the transition metal oxides and lanthanides. Previously introduced nominal double-counting is in much better agreement with the exact double-counting than most widely used fully localized limit formula.
Dynamical Mean Field Theory (DMFT) is a successful method to compute the electronic structure of strongly correlated materials, especially when it is combined with density functional theory (DFT). Here, we present an open-source computational package (and a library) combining DMFT with various DFT codes interfaced through the Wannier90 package. The correlated subspace is expanded as a linear combination of Wannier functions introduced in the DMFT approach as local orbitals. In particular, we provide a library mode for computing the DMFT density matrix. This library can be linked and then internally called from any DFT package, assuming that a set of localized orbitals can be generated in the correlated subspace. The existence of this library allows developers of other DFT codes to interface with our package and achieve the charge-self-consistency within DFT+DMFT loops. To test and check our implementation, we computed the density of states and the band structure of well-known correlated materials, namely LaNiO3, SrVO3, and NiO. The obtained results are compared to those obtained from other DFT+DMFT implementations.
We propose a hybrid approach which employs the dynamical mean-field theory (DMFT) self-energy for the correlated, typically rather localized orbitals and a conventional density functional theory (DFT) exchange-correlation potential for the less correlated, less localized orbitals. We implement this self-energy (plus charge density) self-consistent DFT+DMFT scheme in a basis of maximally localized Wannier orbitals using Wien2K, wien2wannier, and the DMFT impurity solver w2dynamics. As a testbed material we apply the method to SrVO$_3$ and report a significant improvement as compared to previous $d$+$p$ calculations. In particular the position of the oxygen $p$ bands is reproduced correctly, which has been a persistent hassle with unwelcome consequences for the $d$-$p$ hybridization and correlation strength. Taking the (linearized) DMFT self-energy also in the Kohn-Sham equation renders the so-called double-counting problem obsolete.
We present a new method to compute the electronic structure of correlated materials combining the hybrid functional method with the dynamical mean-field theory. As a test example of the method we study cerium sesquioxide, a strongly correlated Mott-band insulator. The hybrid functional part improves the magnitude of the pd-band gap which is underestimated in the standard approximations to density functional theory while the dynamical mean-field theory part splits the 4f-electron spectra into a lower and an upper Hubbard band.
We study effects of charge self-consistency within the combination of density functional theory (DFT; Wien2k) with dynamical mean field theory (DMFT; w2dynamics) in a basis of maximally localized Wannier orbitals. Using the example of two cuprates, we demonstrate that even if there is only a single Wannier orbital with fixed filling, a noteworthy charge redistribution can occur. This effect stems from a reoccupation of the Wannier orbital in k-space when going from the single, metallic DFT band to the split, insulating Hubbard bands of DMFT. We analyze another charge self-consistency effect beyond moving charge from one site to another: the correlation-enhanced orbital polarization in a freestanding layer of SrVO3.
We present an efficient exact diagonalization scheme for the extended dynamical mean-field theory and apply it to the extended Hubbard model on the square lattice with nonlocal charge-charge interactions. Our solver reproduces the phase diagram of this approximation with good accuracy. Details on the numerical treatment of the large Hilbert space of the auxiliary Holstein-Anderson impurity problem are provided. Benchmarks with a numerically exact strong-coupling continuous-time quantum-Monte Carlo solver show better convergence behavior of the exact diagonalization in the deep insulator. Special attention is given to possible effects due to the discretization of the bosonic bath. We discuss the quality of real axis spectra and address the question of screening in the Mott insulator within extended dynamical mean-field theory.