Do you want to publish a course? Click here

Cold imprint of supervoids in the Cosmic Microwave Background re-considered with Planck and BOSS DR10

454   0   0.0 ( 0 )
 Added by Andras Kovacs
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze publicly available void catalogs of the Baryon Oscillation Spectroscopic Survey Data Release 10 at redshifts $0.4<z<0.7$. The first goal of this paper is to extend the Cosmic Microwave Background stacking analysis of previous spectroscopic void samples at $z<0.4$. In addition, the DR10 void catalog provides the first chance to spectroscopically probe the volume of the Granett et al. (2008) supervoid catalog that constitutes the only set of voids which has shown a significant detection of a cross-correlation signal between void locations and average CMB chill. We found that the positions of voids identified in the spectroscopic DR10 galaxy catalog typically do not coincide with the locations of the Granett et al. supervoids in the overlapping volume, in spite of the presence of large underdense regions of high void-density in DR10. This failure to locate the same structures with spectroscopic redshifts may arise due to systematic differences in the properties of voids detected in photometric and spectroscopic samples. In the stacking measurement, we first find a $Delta T = - 11.5 pm 3.7~mu K$ imprint for 35 of the 50 Granett et al. supervoids available in the DR10 volume. For the DR10 void catalog, lacking a prior on the number of voids to be considered in the stacking analysis, we find that the correlation measurement is fully consistent with no correlation. However, the measurement peaks with amplitude $Delta T = - 9.8 pm 4.8~mu K$ for the a posteriori-selected 44 largest voids of size $R>65~Mpc/h$ that does match in terms of amplitude and number of structures the Granett et al. observation, although at different void positions.



rate research

Read More

117 - Yan-Chuan Cai 2013
We measure the average temperature decrement on the cosmic microwave background (CMB) produced by voids selected in the SDSS DR7 spectroscopic redshift galaxy catalog, spanning redshifts $0<z<0.44$. We find an imprint of amplitude between 2.6 and 2.9$mu K$ as viewed through a compensated top-hat filter scaled to the radius of each void; we assess the statistical significance of the imprint at ~2$sigma$. We make crucial use of $N$-body simulations to calibrate our analysis. As expected, we find that large voids produce cold spots on the CMB through the Integrated Sachs-Wolfe (ISW) effect. However, we also find that small voids in the halo density field produce hot spots, because they reside in contracting, larger-scale overdense regions. This is an important effect to consider when stacking CMB imprints from voids of different radius. We have found that the same filter radius that gives the largest ISW signal in simulations also yields close to the largest detected signal in the observations. However, although it is low in significance, our measured signal is much higher-amplitude than expected from ISW in the concordance $Lambda$CDM universe. The discrepancy is also at the ~2$sigma$ level. We have demonstrated that our result is robust against the varying of thresholds over a wide range.
Small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshifts $0.2 < z < 0.65$. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with $Delta T_{f} approx -5.0pm3.7~mu K$ and a hot imprint of superclusters $Delta T_{f} approx 5.1pm3.2~mu K$ ; this is $sim1.2sigma$ higher than the expected $|Delta T_{f}| approx 0.6~mu K$ imprint of such super-structures in $Lambda$CDM. If we instead use an a posteriori selected filter size ($R/R_{v}=0.6$), we can find a temperature decrement as large as $Delta T_{f} approx -9.8pm4.7~mu K$ for voids, which is $sim2sigma$ above $Lambda$CDM expectations and is comparable to previous measurements made using SDSS super-structure data.
We use a WISE-2MASS-Pan-STARRS1 galaxy catalog to search for a supervoid in the direction of the Cosmic Microwave Background Cold Spot. We obtain photometric redshifts using our multicolor data set to create a tomographic map of the galaxy distribution. The radial density profile centred on the Cold Spot shows a large low density region, extending over 10s of degrees. Motivated by previous Cosmic Microwave Background results, we test for underdensities within two angular radii, $5^circ$, and $15^circ$. Our data, combined with an earlier measurement by Granett et al 2010, are consistent with a large $R_{rm void}=(192 pm 15)h^{-1} Mpc $ $(2sigma)$ supervoid with $delta simeq -0.13 pm 0.03$ centered at $z=0.22pm0.01$. Such a supervoid, constituting a $sim3.5 sigma$ fluctuation in the $Lambda CDM$ model, is a plausible cause for the Cold Spot.
We use the WISE-2MASS infrared galaxy catalog matched with Pan-STARRS1 (PS1) galaxies to search for a supervoid in the direction of the Cosmic Microwave Background Cold Spot. Our imaging catalog has median redshift $zsimeq 0.14$, and we obtain photometric redshifts from PS1 optical colours to create a tomographic map of the galaxy distribution. The radial profile centred on the Cold Spot shows a large low density region, extending over 10s of degrees. Motivated by previous Cosmic Microwave Background results, we test for underdensities within two angular radii, $5^circ$, and $15^circ$. The counts in photometric redshift bins show significantly low densities at high detection significance, $gtrsim 5 sigma$ and $gtrsim 6 sigma$, respectively, for the two fiducial radii. The line-of-sight position of the deepest region of the void is $zsimeq 0.15-0.25$. Our data, combined with an earlier measurement by Granett et al. 2010, are consistent with a large $R_{rm void}=(220 pm 50) h^{-1}Mpc $ supervoid with $delta_{m} simeq -0.14 pm 0.04$ centered at $z=0.22pm0.03$. Such a supervoid, constituting at least a $simeq 3.3sigma$ fluctuation in a Gaussian distribution of the $Lambda CDM$ model, is a plausible cause for the Cold Spot.
Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint on degree scales. We use the simulated CMB lensing convergence map from the MICE N-body simulation to calibrate our detection strategy for a given void definition and galaxy tracer density. We then identify cosmic voids in DES Year 1 data and stack the Planck 2015 lensing convergence map on their locations, probing the consistency of simulated and observed void lensing signals. When fixing the shape of the stacked convergence profile to that calibrated from simulations, we find imprints at the $3{sigma}$ significance level for various analysis choices. The best measurement strategies based on the MICE calibration process yield $S/N sim 4$ for DES Y1, and the best-fit amplitude recovered from the data is consistent with expectations from MICE ($A sim 1$). Given these results as well as the agreement between them and N-body simulations, we conclude that the previously reported excess integrated Sachs-Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no counterpart in the Planck CMB lensing map.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا